This Week In Computer Science Papers
Week beginning 9th February 2026
Tap a tile to open details. Use the left sidebar to filter by category.
No filters applied
Showing 1–36 of 200
Autoregressive Image Generation with Masked Bit Modeling
2026-02-09Computer Vision and Pattern Recognitionarxiv
Abstract
This paper challenges the dominance of continuous pipelines in visual generation. We systematically investigate the performance gap between discrete and continuous methods. Contrary to the belief that discrete tokenizers are intrinsically inferior, we demonstrate that the disparity arises primarily from the total number of bits allocated in the latent space (i.e., the compression ratio). We show that scaling up the codebook size effectively bridges this gap, allowing discrete tokenizers to match or surpass their continuous counterparts. However, existing discrete generation methods struggle to capitalize on this insight, suffering from performance degradation or prohibitive training costs with scaled codebook. To address this, we propose masked Bit AutoRegressive modeling (BAR), a scalable framework that supports arbitrary codebook sizes. By equipping an autoregressive transformer with a masked bit modeling head, BAR predicts discrete tokens through progressively generating their constituent bits. BAR achieves a new state-of-the-art gFID of 0.99 on ImageNet-256, outperforming leading methods across both continuous and discrete paradigms, while significantly reducing sampling costs and converging faster than prior continuous approaches. Project page is available at https://bar-gen.github.io/
Open → 2602.09024v1
TwinRL-VLA: Digital Twin-Driven Reinforcement Learning for Real-World R…
2026-02-09Roboticsarxiv
Abstract
Despite strong generalization capabilities, Vision-Language-Action (VLA) models remain constrained by the high cost of expert demonstrations and insufficient real-world interaction. While online reinforcement learning (RL) has shown promise in improving general foundation models, applying RL to VLA manipulation in real-world settings is still hindered by low exploration efficiency and a restricted exploration space. Through systematic real-world experiments, we observe that the effective exploration space of online RL is closely tied to the data distribution of supervised fine-tuning (SFT). Motivated by this observation, we propose TwinRL, a digital twin-real-world collaborative RL framework designed to scale and guide exploration for VLA models. First, a high-fidelity digital twin is efficiently reconstructed from smartphone-captured scenes, enabling realistic bidirectional transfer between real and simulated environments. During the SFT warm-up stage, we introduce an exploration space expansion strategy using digital twins to broaden the support of the data trajectory distribution. Building on this enhanced initialization, we propose a sim-to-real guided exploration strategy to further accelerate online RL. Specifically, TwinRL performs efficient and parallel online RL in the digital twin prior to deployment, effectively bridging the gap between offline and online training stages. Subsequently, we exploit efficient digital twin sampling to identify failure-prone yet informative configurations, which are used to guide targeted human-in-the-loop rollouts on the real robot. In our experiments, TwinRL approaches 100% success in both in-distribution regions covered by real-world demonstrations and out-of-distribution regions, delivering at least a 30% speedup over prior real-world RL methods and requiring only about 20 minutes on average across four tasks.
Open → 2602.09023v1
WorldCompass: Reinforcement Learning for Long-Horizon World Models
2026-02-09Computer Vision and Pattern Recognitionarxiv
Abstract
This work presents WorldCompass, a novel Reinforcement Learning (RL) post-training framework for the long-horizon, interactive video-based world models, enabling them to explore the world more accurately and consistently based on interaction signals. To effectively "steer" the world model's exploration, we introduce three core innovations tailored to the autoregressive video generation paradigm: 1) Clip-level rollout Strategy: We generate and evaluate multiple samples at a single target clip, which significantly boosts rollout efficiency and provides fine-grained reward signals. 2) Complementary Reward Functions: We design reward functions for both interaction-following accuracy and visual quality, which provide direct supervision and effectively suppress reward-hacking behaviors. 3) Efficient RL Algorithm: We employ the negative-aware fine-tuning strategy coupled with various efficiency optimizations to efficiently and effectively enhance model capacity. Evaluations on the SoTA open-source world model, WorldPlay, demonstrate that WorldCompass significantly improves interaction accuracy and visual fidelity across various scenarios.
Open → 2602.09022v1
$χ_{0}$: Resource-Aware Robust Manipulation via Taming Distributional I…
2026-02-09RoboticsComputer Vision and Pattern Recognitionarxiv
Abstract
High-reliability long-horizon robotic manipulation has traditionally relied on large-scale data and compute to understand complex real-world dynamics. However, we identify that the primary bottleneck to real-world robustness is not resource scale alone, but the distributional shift among the human demonstration distribution, the inductive bias learned by the policy, and the test-time execution distribution -- a systematic inconsistency that causes compounding errors in multi-stage tasks. To mitigate these inconsistencies, we propose $χ_{0}$, a resource-efficient framework with effective modules designated to achieve production-level robustness in robotic manipulation. Our approach builds off three technical pillars: (i) Model Arithmetic, a weight-space merging strategy that efficiently soaks up diverse distributions of different demonstrations, varying from object appearance to state variations; (ii) Stage Advantage, a stage-aware advantage estimator that provides stable, dense progress signals, overcoming the numerical instability of prior non-stage approaches; and (iii) Train-Deploy Alignment, which bridges the distribution gap via spatio-temporal augmentation, heuristic DAgger corrections, and temporal chunk-wise smoothing. $χ_{0}$ enables two sets of dual-arm robots to collaboratively orchestrate long-horizon garment manipulation, spanning tasks from flattening, folding, to hanging different clothes. Our method exhibits high-reliability autonomy; we are able to run the system from arbitrary initial state for consecutive 24 hours non-stop. Experiments validate that $χ_{0}$ surpasses the state-of-the-art $π_{0.5}$ in success rate by nearly 250%, with only 20-hour data and 8 A100 GPUs. Code, data and models will be released to facilitate the community.
Open → 2602.09021v1
Robustness Is a Function, Not a Number: A Factorized Comprehensive Stud…
2026-02-09RoboticsArtificial IntelligenceComputer Vision and Pattern Recognitionarxiv
Abstract
Out of distribution (OOD) robustness in autonomous driving is often reduced to a single number, hiding what breaks a policy. We decompose environments along five axes: scene (rural/urban), season, weather, time (day/night), and agent mix; and measure performance under controlled $k$-factor perturbations ($k \in \{0,1,2,3\}$). Using closed loop control in VISTA, we benchmark FC, CNN, and ViT policies, train compact ViT heads on frozen foundation-model (FM) features, and vary ID support in scale, diversity, and temporal context. (1) ViT policies are markedly more OOD-robust than comparably sized CNN/FC, and FM features yield state-of-the-art success at a latency cost. (2) Naive temporal inputs (multi-frame) do not beat the best single-frame baseline. (3) The largest single factor drops are rural $\rightarrow$ urban and day $\rightarrow$ night ($\sim 31\%$ each); actor swaps $\sim 10\%$, moderate rain $\sim 7\%$; season shifts can be drastic, and combining a time flip with other changes further degrades performance. (4) FM-feature policies stay above $85\%$ under three simultaneous changes; non-FM single-frame policies take a large first-shift hit, and all no-FM models fall below $50\%$ by three changes. (5) Interactions are non-additive: some pairings partially offset, whereas season-time combinations are especially harmful. (6) Training on winter/snow is most robust to single-factor shifts, while a rural+summer baseline gives the best overall OOD performance. (7) Scaling traces/views improves robustness ($+11.8$ points from $5$ to $14$ traces), yet targeted exposure to hard conditions can substitute for scale. (8) Using multiple ID environments broadens coverage and strengthens weak cases (urban OOD $60.6\% \rightarrow 70.1\%$) with a small ID drop; single-ID preserves peak performance but in a narrow domain. These results yield actionable design rules for OOD-robust driving policies.
Open → 2602.09018v1
Contact-Anchored Policies: Contact Conditioning Creates Strong Robot Ut…
2026-02-09RoboticsMachine Learningarxiv
Abstract
The prevalent paradigm in robot learning attempts to generalize across environments, embodiments, and tasks with language prompts at runtime. A fundamental tension limits this approach: language is often too abstract to guide the concrete physical understanding required for robust manipulation. In this work, we introduce Contact-Anchored Policies (CAP), which replace language conditioning with points of physical contact in space. Simultaneously, we structure CAP as a library of modular utility models rather than a monolithic generalist policy. This factorization allows us to implement a real-to-sim iteration cycle: we build EgoGym, a lightweight simulation benchmark, to rapidly identify failure modes and refine our models and datasets prior to real-world deployment. We show that by conditioning on contact and iterating via simulation, CAP generalizes to novel environments and embodiments out of the box on three fundamental manipulation skills while using only 23 hours of demonstration data, and outperforms large, state-of-the-art VLAs in zero-shot evaluations by 56%. All model checkpoints, codebase, hardware, simulation, and datasets will be open-sourced. Project page: https://cap-policy.github.io/
Open → 2602.09017v1
Raster2Seq: Polygon Sequence Generation for Floorplan Reconstruction
2026-02-09Computer Vision and Pattern Recognitionarxiv
Abstract
Reconstructing a structured vector-graphics representation from a rasterized floorplan image is typically an important prerequisite for computational tasks involving floorplans such as automated understanding or CAD workflows. However, existing techniques struggle in faithfully generating the structure and semantics conveyed by complex floorplans that depict large indoor spaces with many rooms and a varying numbers of polygon corners. To this end, we propose Raster2Seq, framing floorplan reconstruction as a sequence-to-sequence task in which floorplan elements--such as rooms, windows, and doors--are represented as labeled polygon sequences that jointly encode geometry and semantics. Our approach introduces an autoregressive decoder that learns to predict the next corner conditioned on image features and previously generated corners using guidance from learnable anchors. These anchors represent spatial coordinates in image space, hence allowing for effectively directing the attention mechanism to focus on informative image regions. By embracing the autoregressive mechanism, our method offers flexibility in the output format, enabling for efficiently handling complex floorplans with numerous rooms and diverse polygon structures. Our method achieves state-of-the-art performance on standard benchmarks such as Structure3D, CubiCasa5K, and Raster2Graph, while also demonstrating strong generalization to more challenging datasets like WAFFLE, which contain diverse room structures and complex geometric variations.
Open → 2602.09016v1
CIC-Trap4Phish: A Unified Multi-Format Dataset for Phishing and Quishin…
2026-02-09Cryptography and SecurityArtificial Intelligencearxiv
Abstract
Phishing attacks represents one of the primary attack methods which is used by cyber attackers. In many cases, attackers use deceptive emails along with malicious attachments to trick users into giving away sensitive information or installing malware while compromising entire systems. The flexibility of malicious email attachments makes them stand out as a preferred vector for attackers as they can embed harmful content such as malware or malicious URLs inside standard document formats. Although phishing email defenses have improved a lot, attackers continue to abuse attachments, enabling malicious content to bypass security measures. Moreover, another challenge that researches face in training advance models, is lack of an unified and comprehensive dataset that covers the most prevalent data types. To address this gap, we generated CIC-Trap4Phish, a multi-format dataset containing both malicious and benign samples across five categories commonly used in phishing campaigns: Microsoft Word documents, Excel spreadsheets, PDF files, HTML pages, and QR code images. For the first four file types, a set of execution-free static feature pipeline was proposed, designed to capture structural, lexical, and metadata-based indicators without the need to open or execute files. Feature selection was performed using a combination of SHAP analysis and feature importance, yielding compact, discriminative feature subsets for each file type. The selected features were evaluated by using lightweight machine learning models, including Random Forest, XGBoost, and Decision Tree. All models demonstrate high detection accuracy across formats. For QR code-based phishing (quishing), two complementary methods were implemented: image-based detection by employing Convolutional Neural Networks (CNNs) and lexical analysis of decoded URLs using recent lightweight language models.
Open → 2602.09015v1
ArcFlow: Unleashing 2-Step Text-to-Image Generation via High-Precision…
2026-02-09Computer Vision and Pattern RecognitionArtificial Intelligencearxiv
Abstract
Diffusion models have achieved remarkable generation quality, but they suffer from significant inference cost due to their reliance on multiple sequential denoising steps, motivating recent efforts to distill this inference process into a few-step regime. However, existing distillation methods typically approximate the teacher trajectory by using linear shortcuts, which makes it difficult to match its constantly changing tangent directions as velocities evolve across timesteps, thereby leading to quality degradation. To address this limitation, we propose ArcFlow, a few-step distillation framework that explicitly employs non-linear flow trajectories to approximate pre-trained teacher trajectories. Concretely, ArcFlow parameterizes the velocity field underlying the inference trajectory as a mixture of continuous momentum processes. This enables ArcFlow to capture velocity evolution and extrapolate coherent velocities to form a continuous non-linear trajectory within each denoising step. Importantly, this parameterization admits an analytical integration of this non-linear trajectory, which circumvents numerical discretization errors and results in high-precision approximation of the teacher trajectory. To train this parameterization into a few-step generator, we implement ArcFlow via trajectory distillation on pre-trained teacher models using lightweight adapters. This strategy ensures fast, stable convergence while preserving generative diversity and quality. Built on large-scale models (Qwen-Image-20B and FLUX.1-dev), ArcFlow only fine-tunes on less than 5% of original parameters and achieves a 40x speedup with 2 NFEs over the original multi-step teachers without significant quality degradation. Experiments on benchmarks show the effectiveness of ArcFlow both qualitatively and quantitatively.
Open → 2602.09014v1
Dexterous Manipulation Policies from RGB Human Videos via 4D Hand-Objec…
2026-02-09RoboticsComputer Vision and Pattern Recognitionarxiv
Abstract
Multi-finger robotic hand manipulation and grasping are challenging due to the high-dimensional action space and the difficulty of acquiring large-scale training data. Existing approaches largely rely on human teleoperation with wearable devices or specialized sensing equipment to capture hand-object interactions, which limits scalability. In this work, we propose VIDEOMANIP, a device-free framework that learns dexterous manipulation directly from RGB human videos. Leveraging recent advances in computer vision, VIDEOMANIP reconstructs explicit 4D robot-object trajectories from monocular videos by estimating human hand poses, object meshes, and retargets the reconstructed human motions to robotic hands for manipulation learning. To make the reconstructed robot data suitable for dexterous manipulation training, we introduce hand-object contact optimization with interaction-centric grasp modeling, as well as a demonstration synthesis strategy that generates diverse training trajectories from a single video, enabling generalizable policy learning without additional robot demonstrations. In simulation, the learned grasping model achieves a 70.25% success rate across 20 diverse objects using the Inspire Hand. In the real world, manipulation policies trained from RGB videos achieve an average 62.86% success rate across seven tasks using the LEAP Hand, outperforming retargeting-based methods by 15.87%. Project videos are available at videomanip.github.io.
Open → 2602.09013v1
Next-Gen CAPTCHAs: Leveraging the Cognitive Gap for Scalable and Divers…
2026-02-09Machine LearningArtificial IntelligenceComputation and Languagearxiv
Abstract
The rapid evolution of GUI-enabled agents has rendered traditional CAPTCHAs obsolete. While previous benchmarks like OpenCaptchaWorld established a baseline for evaluating multimodal agents, recent advancements in reasoning-heavy models, such as Gemini3-Pro-High and GPT-5.2-Xhigh have effectively collapsed this security barrier, achieving pass rates as high as 90% on complex logic puzzles like "Bingo". In response, we introduce Next-Gen CAPTCHAs, a scalable defense framework designed to secure the next-generation web against the advanced agents. Unlike static datasets, our benchmark is built upon a robust data generation pipeline, allowing for large-scale and easily scalable evaluations, notably, for backend-supported types, our system is capable of generating effectively unbounded CAPTCHA instances. We exploit the persistent human-agent "Cognitive Gap" in interactive perception, memory, decision-making, and action. By engineering dynamic tasks that require adaptive intuition rather than granular planning, we re-establish a robust distinction between biological users and artificial agents, offering a scalable and diverse defense mechanism for the agentic era.
Open → 2602.09012v1
ANCRe: Adaptive Neural Connection Reassignment for Efficient Depth Scal…
2026-02-09Machine LearningArtificial Intelligencearxiv
Abstract
Scaling network depth has been a central driver behind the success of modern foundation models, yet recent investigations suggest that deep layers are often underutilized. This paper revisits the default mechanism for deepening neural networks, namely residual connections, from an optimization perspective. Rigorous analysis proves that the layout of residual connections can fundamentally shape convergence behavior, and even induces an exponential gap in convergence rates. Prompted by this insight, we introduce adaptive neural connection reassignment (ANCRe), a principled and lightweight framework that parameterizes and learns residual connectivities from the data. ANCRe adaptively reassigns residual connections with negligible computational and memory overhead ($<1\%$), while enabling more effective utilization of network depth. Extensive numerical tests across pre-training of large language models, diffusion models, and deep ResNets demonstrate consistently accelerated convergence, boosted performance, and enhanced depth efficiency over conventional residual connections.
Open → 2602.09009v1
ShapeCond: Fast Shapelet-Guided Dataset Condensation for Time Series Cl…
2026-02-09Machine Learningarxiv
Abstract
Time series data supports many domains (e.g., finance and climate science), but its rapid growth strains storage and computation. Dataset condensation can alleviate this by synthesizing a compact training set that preserves key information. Yet most condensation methods are image-centric and often fail on time series because they miss time-series-specific temporal structure, especially local discriminative motifs such as shapelets. In this work, we propose ShapeCond, a novel and efficient condensation framework for time series classification that leverages shapelet-based dataset knowledge via a shapelet-guided optimization strategy. Our shapelet-assisted synthesis cost is independent of sequence length: longer series yield larger speedups in synthesis (e.g., 29$\times$ faster over prior state-of-the-art method CondTSC for time-series condensation, and up to 10,000$\times$ over naively using shapelets on the Sleep dataset with 3,000 timesteps). By explicitly preserving critical local patterns, ShapeCond improves downstream accuracy and consistently outperforms all prior state-of-the-art time series dataset condensation methods across extensive experiments. Code is available at https://github.com/lunaaa95/ShapeCond.
Open → 2602.09008v1
GEBench: Benchmarking Image Generation Models as GUI Environments
2026-02-09Artificial IntelligenceComputer Vision and Pattern Recognitionarxiv
Abstract
Recent advancements in image generation models have enabled the prediction of future Graphical User Interface (GUI) states based on user instructions. However, existing benchmarks primarily focus on general domain visual fidelity, leaving the evaluation of state transitions and temporal coherence in GUI-specific contexts underexplored. To address this gap, we introduce GEBench, a comprehensive benchmark for evaluating dynamic interaction and temporal coherence in GUI generation. GEBench comprises 700 carefully curated samples spanning five task categories, covering both single-step interactions and multi-step trajectories across real-world and fictional scenarios, as well as grounding point localization. To support systematic evaluation, we propose GE-Score, a novel five-dimensional metric that assesses Goal Achievement, Interaction Logic, Content Consistency, UI Plausibility, and Visual Quality. Extensive evaluations on current models indicate that while they perform well on single-step transitions, they struggle significantly with maintaining temporal coherence and spatial grounding over longer interaction sequences. Our findings identify icon interpretation, text rendering, and localization precision as critical bottlenecks. This work provides a foundation for systematic assessment and suggests promising directions for future research toward building high-fidelity generative GUI environments. The code is available at: https://github.com/stepfun-ai/GEBench.
Open → 2602.09007v1
ARO: A New Lens On Matrix Optimization For Large Models
2026-02-09Machine LearningArtificial Intelligencearxiv
Abstract
Matrix-based optimizers have attracted growing interest for improving LLM training efficiency, with significant progress centered on orthogonalization/whitening based methods. While yielding substantial performance gains, a fundamental question arises: can we develop new paradigms beyond orthogonalization, pushing the efficiency frontier further? We present \textbf{Adaptively Rotated Optimization (ARO}, a new matrix optimization framework that treats gradient rotation as a first class design principle. ARO accelerates LLM training by performing normed steepest descent in a rotated coordinate system, where the rotation is determined by a novel norm-informed policy. This perspective yields update rules that go beyond existing orthogonalization and whitening optimizers, improving sample efficiency in practice. To make comparisons reliable, we propose a rigorously controlled benchmarking protocol that reduces confounding and bias. Under this protocol, ARO consistently outperforms AdamW (by 1.3 $\sim$1.35$\times$) and orthogonalization methods (by 1.1$\sim$1.15$\times$) in LLM pretraining at up to 8B activated parameters, and up to $8\times$ overtrain budget, without evidence of diminishing returns. Finally, we discuss how ARO can be reformulated as a symmetry-aware optimizer grounded in rotational symmetries of residual streams, motivating advanced designs that enable computationally efficient exploitation of cross-layer/cross module couplings.
Open → 2602.09006v1
Data Science and Technology Towards AGI Part I: Tiered Data Management
2026-02-09Artificial IntelligenceComputation and Languagearxiv
Abstract
The development of artificial intelligence can be viewed as an evolution of data-driven learning paradigms, with successive shifts in data organization and utilization continuously driving advances in model capability. Current LLM research is dominated by a paradigm that relies heavily on unidirectional scaling of data size, increasingly encountering bottlenecks in data availability, acquisition cost, and training efficiency. In this work, we argue that the development of AGI is entering a new phase of data-model co-evolution, in which models actively guide data management while high-quality data, in turn, amplifies model capabilities. To implement this vision, we propose a tiered data management framework, designed to support the full LLM training lifecycle across heterogeneous learning objectives and cost constraints. Specifically, we introduce an L0-L4 tiered data management framework, ranging from raw uncurated resources to organized and verifiable knowledge. Importantly, LLMs are fully used in data management processes, such as quality scoring and content editing, to refine data across tiers. Each tier is characterized by distinct data properties, management strategies, and training roles, enabling data to be strategically allocated across LLM training stages, including pre-training, mid-training, and alignment. The framework balances data quality, acquisition cost, and marginal training benefit, providing a systematic approach to scalable and sustainable data management. We validate the effectiveness of the proposed framework through empirical studies, in which tiered datasets are constructed from raw corpora and used across multiple training phases. Experimental results demonstrate that tier-aware data utilization significantly improves training efficiency and model performance. To facilitate further research, we release our tiered datasets and processing tools to the community.
Open → 2602.09003v1
From Obstacles to Etiquette: Robot Social Navigation with VLM-Informed…
2026-02-09RoboticsArtificial Intelligencearxiv
Abstract
Navigating socially in human environments requires more than satisfying geometric constraints, as collision-free paths may still interfere with ongoing activities or conflict with social norms. Addressing this challenge calls for analyzing interactions between agents and incorporating common-sense reasoning into planning. This paper presents a social robot navigation framework that integrates geometric planning with contextual social reasoning. The system first extracts obstacles and human dynamics to generate geometrically feasible candidate paths, then leverages a fine-tuned vision-language model (VLM) to evaluate these paths, informed by contextually grounded social expectations, selecting a socially optimized path for the controller. This task-specific VLM distills social reasoning from large foundation models into a smaller and efficient model, allowing the framework to perform real-time adaptation in diverse human-robot interaction contexts. Experiments in four social navigation contexts demonstrate that our method achieves the best overall performance with the lowest personal space violation duration, the minimal pedestrian-facing time, and no social zone intrusions. Project page: https://path-etiquette.github.io
Open → 2602.09002v1
DirMoE: Dirichlet-routed Mixture of Experts
2026-02-09Machine Learningarxiv
Abstract
Mixture-of-Experts (MoE) models have demonstrated exceptional performance in large-scale language models. Existing routers typically rely on non-differentiable Top-$k$+Softmax, limiting their performance and scalability. We argue that two distinct decisions, which experts to activate and how to distribute expert contributions among them, are conflated in standard Top-$k$+Softmax. We introduce Dirichlet-Routed MoE (DirMoE), a novel end-to-end differentiable routing mechanism built on a Dirichlet variational autoencoder framework. This design fundamentally disentangles the core routing problems: expert selection, modeled by a Bernoulli component, and expert contribution among chosen experts, handled by a Dirichlet component. The entire forward pass remains fully differentiable through the use of Gumbel-Sigmoid relaxation for the expert selection and implicit reparameterization for the Dirichlet distribution. Our training objective, a variational ELBO, includes a direct sparsity penalty that precisely controls the number of active experts in expectation, alongside a schedule for key hyperparameters that guides the model from an exploratory to a definitive routing state. Moreover, our DirMoE router matches or exceeds other methods while improving expert specialization.
Open → 2602.09001v1
iGRPO: Self-Feedback-Driven LLM Reasoning
2026-02-09Artificial Intelligencearxiv
Abstract
Large Language Models (LLMs) have shown promise in solving complex mathematical problems, yet they still fall short of producing accurate and consistent solutions. Reinforcement Learning (RL) is a framework for aligning these models with task-specific rewards, improving overall quality and reliability. Group Relative Policy Optimization (GRPO) is an efficient, value-function-free alternative to Proximal Policy Optimization (PPO) that leverages group-relative reward normalization. We introduce Iterative Group Relative Policy Optimization (iGRPO), a two-stage extension of GRPO that adds dynamic self-conditioning through model-generated drafts. In Stage 1, iGRPO samples multiple exploratory drafts and selects the highest-reward draft using the same scalar reward signal used for optimization. In Stage 2, it appends this best draft to the original prompt and applies a GRPO-style update on draft-conditioned refinements, training the policy to improve beyond its strongest prior attempt. Under matched rollout budgets, iGRPO consistently outperforms GRPO across base models (e.g., Nemotron-H-8B-Base-8K and DeepSeek-R1 Distilled), validating its effectiveness on diverse reasoning benchmarks. Moreover, applying iGRPO to OpenReasoning-Nemotron-7B trained on AceReason-Math achieves new state-of-the-art results of 85.62\% and 79.64\% on AIME24 and AIME25, respectively. Ablations further show that the refinement wrapper generalizes beyond GRPO variants, benefits from a generative judge, and alters learning dynamics by delaying entropy collapse. These results underscore the potential of iterative, self-feedback-based RL for advancing verifiable mathematical reasoning.
Open → 2602.09000v1
CLUE: Crossmodal disambiguation via Language-vision Understanding with…
2026-02-09Roboticsarxiv
Abstract
With the increasing integration of robots into daily life, human-robot interaction has become more complex and multifaceted. A critical component of this interaction is Interactive Visual Grounding (IVG), through which robots must interpret human intentions and resolve ambiguity. Existing IVG models generally lack a mechanism to determine when to ask clarification questions, as they implicitly rely on their learned representations. CLUE addresses this gap by converting the VLM's cross-modal attention into an explicit, spatially grounded signal for deciding when to ask. We extract text to image attention maps and pass them to a lightweight CNN to detect referential ambiguity, while a LoRA fine-tuned decoder conducts the dialog and emits grounding location tokens. We train on a real-world interactive dataset for IVG, and a mixed ambiguity set for the detector. With InViG-only supervision, our model surpasses a state-of-the-art method while using parameter-efficient fine-tuning. Similarly, the ambiguity detector outperforms prior baselines. Overall, CLUE turns the internal cross-modal attention of a VLM into an explicit, spatially grounded signal for deciding when to ask. The data and code are publicly available at: mouadabrini.github.io/clue
Open → 2602.08999v1
Universal Coefficients and Mayer-Vietoris Sequence for Groupoid Homology
2026-02-09Machine Learningarxiv
Abstract
We study homology of ample groupoids via the compactly supported Moore complex of the nerve. Let $A$ be a topological abelian group. For $n\ge 0$ set $C_n(\mathcal G;A) := C_c(\mathcal G_n,A)$ and define $\partial_n^A=\sum_{i=0}^n(-1)^i(d_i)_*$. This defines $H_n(\mathcal G;A)$. The theory is functorial for continuous étale homomorphisms. It is compatible with standard reductions, including restriction to saturated clopen subsets. In the ample setting it is invariant under Kakutani equivalence. We reprove Matui type long exact sequences and identify the comparison maps at chain level. For discrete $A$ we prove a natural universal coefficient short exact sequence $$0\to H_n(\mathcal G)\otimes_{\mathbb Z}A\xrightarrow{\ ι_n^{\mathcal G}\ }H_n(\mathcal G;A)\xrightarrow{\ κ_n^{\mathcal G}\ }\operatorname{Tor}_1^{\mathbb Z}\bigl(H_{n-1}(\mathcal G),A\bigr)\to 0.$$ The key input is the chain level isomorphism $C_c(\mathcal G_n,\mathbb Z)\otimes_{\mathbb Z}A\cong C_c(\mathcal G_n,A)$, which reduces the groupoid statement to the classical algebraic UCT for the free complex $C_c(\mathcal G_\bullet,\mathbb Z)$. We also isolate the obstruction for non-discrete coefficients. For a locally compact totally disconnected Hausdorff space $X$ with a basis of compact open sets, the image of $Φ_X:C_c(X,\mathbb Z)\otimes_{\mathbb Z}A\to C_c(X,A)$ is exactly the compactly supported functions with finite image. Thus $Φ_X$ is surjective if and only if every $f\in C_c(X,A)$ has finite image, and for suitable $X$ one can produce compactly supported continuous maps $X\to A$ with infinite image. Finally, for a clopen saturated cover $\mathcal G_0=U_1\cup U_2$ we construct a short exact sequence of Moore complexes and derive a Mayer-Vietoris long exact sequence for $H_\bullet(\mathcal G;A)$ for explicit computations.
Open → 2602.08998v1
Paradox of De-identification: A Critique of HIPAA Safe Harbour in the A…
2026-02-09Computers and SocietyComputation and Languagearxiv
Abstract
Privacy is a human right that sustains patient-provider trust. Clinical notes capture a patient's private vulnerability and individuality, which are used for care coordination and research. Under HIPAA Safe Harbor, these notes are de-identified to protect patient privacy. However, Safe Harbor was designed for an era of categorical tabular data, focusing on the removal of explicit identifiers while ignoring the latent information found in correlations between identity and quasi-identifiers, which can be captured by modern LLMs. We first formalize these correlations using a causal graph, then validate it empirically through individual re-identification of patients from scrubbed notes. The paradox of de-identification is further shown through a diagnosis ablation: even when all other information is removed, the model can predict the patient's neighborhood based on diagnosis alone. This position paper raises the question of how we can act as a community to uphold patient-provider trust when de-identification is inherently imperfect. We aim to raise awareness and discuss actionable recommendations.
Open → 2602.08997v1
Generalizing Sports Feedback Generation by Watching Competitions and Re…
2026-02-09Computer Vision and Pattern Recognitionarxiv
Abstract
While there is rapid progress in video-LLMs with advanced reasoning capabilities, prior work shows that these models struggle on the challenging task of sports feedback generation and require expensive and difficult-to-collect finetuning feedback data for each sport. This limitation is evident from the poor generalization to sports unseen during finetuning. Furthermore, traditional text generation evaluation metrics (e.g., BLEU-4, METEOR, ROUGE-L, BERTScore), originally developed for machine translation and summarization, fail to capture the unique aspects of sports feedback quality. To address the first problem, using rock climbing as our case study, we propose using auxiliary freely-available web data from the target domain, such as competition videos and coaching manuals, in addition to existing sports feedback from a disjoint, source domain to improve sports feedback generation performance on the target domain. To improve evaluation, we propose two evaluation metrics: (1) specificity and (2) actionability. Together, our approach enables more meaningful and practical generation of sports feedback under limited annotations.
Open → 2602.08996v1
When Actions Go Off-Task: Detecting and Correcting Misaligned Actions i…
2026-02-09Computation and Languagearxiv
Abstract
Computer-use agents (CUAs) have made tremendous progress in the past year, yet they still frequently produce misaligned actions that deviate from the user's original intent. Such misaligned actions may arise from external attacks (e.g., indirect prompt injection) or from internal limitations (e.g., erroneous reasoning). They not only expose CUAs to safety risks, but also degrade task efficiency and reliability. This work makes the first effort to define and study misaligned action detection in CUAs, with comprehensive coverage of both externally induced and internally arising misaligned actions. We further identify three common categories in real-world CUA deployment and construct MisActBench, a benchmark of realistic trajectories with human-annotated, action-level alignment labels. Moreover, we propose DeAction, a practical and universal guardrail that detects misaligned actions before execution and iteratively corrects them through structured feedback. DeAction outperforms all existing baselines across offline and online evaluations with moderate latency overhead: (1) On MisActBench, it outperforms baselines by over 15% absolute in F1 score; (2) In online evaluation, it reduces attack success rate by over 90% under adversarial settings while preserving or even improving task success rate in benign environments.
Open → 2602.08995v1
Rhythms of Recovery: Patient-Centered Virtual Reality Exergame for Phys…
2026-02-09Human-Computer Interactionarxiv
Abstract
Early mobilization is a structured protocol designed to facilitate motor recovery in intensive care unit (ICU) patients with ICU-acquired weakness. This process is typically implemented by an interdisciplinary team of nurses, physical therapists, and other healthcare professionals. However, its application is often constrained by the patients' critical conditions, limited mobility, and the challenges of coordinating care within resource-intensive ICU environments. In this study, we developed a patient-centered virtual reality (VR) exergame through an interdisciplinary design process involving clinicians and therapists, tailored to the constraints of critical care. The exergame incorporates progressive mobility levels that mirror early mobilization practices, and includes an embodied avatar to provide guidance and motivation. Using Meta Quest 3 body tracking, the system captures and visualizes patients' movements, thereby providing motivational engagement and quantifiable mobility metrics. We evaluated the exergame in two stages: a dual-user study involving healthy participants and healthcare professionals or students (N = 13), and a subsequent study with cardiothoracic ICU patients (N = 18) to assess feasibility, design validity, and clinical acceptance. Across both studies, participants reported high enjoyment and engagement without discomfort or stress. Furthermore, patients demonstrated increases in movement speed, range of motion, and workspace volume of the upper body across game levels. Physiological monitoring further indicated that the exergame elicited exertion without inducing excessive cardiovascular responses. These findings highlight the feasibility of VR exergames as a clinically acceptable and engaging adjunct to early mobilization in critical care, offering a novel pathway to improve rehabilitation outcomes for ICU patients.
Open → 2602.08994v1
Reverse Online Guessing Attacks on PAKE Protocols
2026-02-09Cryptography and Securityarxiv
Abstract
Though not yet widely deployed, password-authenticated key exchange (PAKE) protocols have been the subject of several recent standardization efforts, partly because of their resistance against various guessing attacks, but also because they do not require a public-key infrastructure (PKI), making them naturally resistant against PKI failures. The goal of this paper is to reevaluate the PAKE model by noting that the absence of a PKI -- or, more generally, of a mechanism aside from the password for authenticating the server -- makes such protocols vulnerable to reverse online guessing attacks, in which an adversary attempts to validate password guesses by impersonating a server. While their logic is similar to traditional guessing, where the attacker impersonates a client, reverse guessing poses a unique risk because the burden of detection is shifted to the clients, rendering existing defenses against traditional guessing moot. Our results demonstrate that reverse guessing is particularly effective when an adversary attacks clients indiscriminately, such as in phishing or password-spraying attacks, or for applications with automated login processes or a universal password, such as WPA3-SAE. Our analysis suggests that stakeholders should, by default, authenticate the server using more stringent measures than just the user's password, and that a password-only mode of operation should be a last resort against catastrophic security failures when other authentication mechanisms are not available.
Open → 2602.08993v1
InternAgent-1.5: A Unified Agentic Framework for Long-Horizon Autonomou…
2026-02-09Artificial Intelligencearxiv
Abstract
We introduce InternAgent-1.5, a unified system designed for end-to-end scientific discovery across computational and empirical domains. The system is built on a structured architecture composed of three coordinated subsystems for generation, verification, and evolution. These subsystems are supported by foundational capabilities for deep research, solution optimization, and long horizon memory. The architecture allows InternAgent-1.5 to operate continuously across extended discovery cycles while maintaining coherent and improving behavior. It also enables the system to coordinate computational modeling and laboratory experimentation within a single unified system. We evaluate InternAgent-1.5 on scientific reasoning benchmarks such as GAIA, HLE, GPQA, and FrontierScience, and the system achieves leading performance that demonstrates strong foundational capabilities. Beyond these benchmarks, we further assess two categories of discovery tasks. In algorithm discovery tasks, InternAgent-1.5 autonomously designs competitive methods for core machine learning problems. In empirical discovery tasks, it executes complete computational or wet lab experiments and produces scientific findings in earth, life, biological, and physical domains. Overall, these results show that InternAgent-1.5 provides a general and scalable framework for autonomous scientific discovery.
Open → 2602.08990v1
Zero Trust for Multi-RAT IoT: Trust Boundary Management in Heterogeneou…
2026-02-09Networking and Internet ArchitectureCryptography and Securityarxiv
Abstract
The proliferation of Multi-Radio Access Technology, Internet of Things devices, particularly Unmanned Aerial Vehicles operating across LoRaWAN, 5G/4G cellular, Meshtastic mesh, proprietary protocols such as DJI OcuSync, MAVLink telemetry links, Wi-Fi, and satellite, creates a fundamental and hitherto unexamined challenge for Zero Trust Architecture adoption. Each transition between radio access technologies constitutes a trust boundary crossing: the device exits one network trust domain and enters another, potentially invalidating authentication state, device attestation, and contextual trust signals. Current ZTA frameworks assume relatively stable network environments and do not address the trust implications of frequent, dynamic RAT switching in mobile IoT deployments.
Open → 2602.08989v1
Improving Detection of Rare Nodes in Hierarchical Multi-Label Learning
2026-02-09Machine LearningArtificial Intelligencearxiv
Abstract
In hierarchical multi-label classification, a persistent challenge is enabling model predictions to reach deeper levels of the hierarchy for more detailed or fine-grained classifications. This difficulty partly arises from the natural rarity of certain classes (or hierarchical nodes) and the hierarchical constraint that ensures child nodes are almost always less frequent than their parents. To address this, we propose a weighted loss objective for neural networks that combines node-wise imbalance weighting with focal weighting components, the latter leveraging modern quantification of ensemble uncertainties. By emphasizing rare nodes rather than rare observations (data points), and focusing on uncertain nodes for each model output distribution during training, we observe improvements in recall by up to a factor of five on benchmark datasets, along with statistically significant gains in $F_{1}$ score. We also show our approach aids convolutional networks on challenging tasks, as in situations with suboptimal encoders or limited data.
Open → 2602.08986v1
Next Concept Prediction in Discrete Latent Space Leads to Stronger Lang…
2026-02-09Computation and LanguageArtificial Intelligencearxiv
Abstract
We propose Next Concept Prediction (NCP), a generative pretraining paradigm built on top of Next Token Prediction (NTP). NCP predicts discrete concepts that span multiple tokens, thereby forming a more challenging pretraining objective. Our model, ConceptLM, quantizes hidden states using Vector Quantization and constructs a concept vocabulary. It leverages both NCP and NTP to drive parameter updates and generates a concept to guide the generation of the following tokens. We train ConceptLM from scratch at scales ranging from 70M to 1.5B parameters with up to 300B training data, including Pythia and GPT-2 backbones. Results on 13 benchmarks show that NCP yields consistent performance gains over traditional token-level models. Furthermore, continual pretraining experiments on an 8B-parameter Llama model indicate that NCP can further improve an NTP-trained model. Our analysis suggests that NCP leads to more powerful language models by introducing a harder pretraining task, providing a promising path toward better language modeling.
Open → 2602.08984v1
StretchTime: Adaptive Time Series Forecasting via Symplectic Attention
2026-02-09Machine LearningArtificial Intelligencearxiv
Abstract
Transformer architectures have established strong baselines in time series forecasting, yet they typically rely on positional encodings that assume uniform, index-based temporal progression. However, real-world systems, from shifting financial cycles to elastic biological rhythms, frequently exhibit "time-warped" dynamics where the effective flow of time decouples from the sampling index. In this work, we first formalize this misalignment and prove that rotary position embedding (RoPE) is mathematically incapable of representing non-affine temporal warping. To address this, we propose Symplectic Positional Embeddings (SyPE), a learnable encoding framework derived from Hamiltonian mechanics. SyPE strictly generalizes RoPE by extending the rotation group $\mathrm{SO}(2)$ to the symplectic group $\mathrm{Sp}(2,\mathbb{R})$, modulated by a novel input-dependent adaptive warp module. By allowing the attention mechanism to adaptively dilate or contract temporal coordinates end-to-end, our approach captures locally varying periodicities without requiring pre-defined warping functions. We implement this mechanism in StretchTime, a multivariate forecasting architecture that achieves state-of-the-art performance on standard benchmarks, demonstrating superior robustness on datasets exhibiting non-stationary temporal dynamics.
Open → 2602.08983v1
When do neural ordinary differential equations generalize on complex ne…
2026-02-09Machine LearningSocial and Information Networksarxiv
Abstract
Neural ordinary differential equations (neural ODEs) can effectively learn dynamical systems from time series data, but their behavior on graph-structured data remains poorly understood, especially when applied to graphs with different size or structure than encountered during training. We study neural ODEs ($\mathtt{nODE}$s) with vector fields following the Barabási-Barzel form, trained on synthetic data from five common dynamical systems on graphs. Using the $\mathbb{S}^1$-model to generate graphs with realistic and tunable structure, we find that degree heterogeneity and the type of dynamical system are the primary factors in determining $\mathtt{nODE}$s' ability to generalize across graph sizes and properties. This extends to $\mathtt{nODE}$s' ability to capture fixed points and maintain performance amid missing data. Average clustering plays a secondary role in determining $\mathtt{nODE}$ performance. Our findings highlight $\mathtt{nODE}$s as a powerful approach to understanding complex systems but underscore challenges emerging from degree heterogeneity and clustering in realistic graphs.
Open → 2602.08980v1
Beyond Transcripts: A Renewed Perspective on Audio Chaptering
2026-02-09SoundComputation and Languagearxiv
Abstract
Audio chaptering, the task of automatically segmenting long-form audio into coherent sections, is increasingly important for navigating podcasts, lectures, and videos. Despite its relevance, research remains limited and text-based, leaving key questions unresolved about leveraging audio information, handling ASR errors, and transcript-free evaluation. We address these gaps through three contributions: (1) a systematic comparison between text-based models with acoustic features, a novel audio-only architecture (AudioSeg) operating on learned audio representations, and multimodal LLMs; (2) empirical analysis of factors affecting performance, including transcript quality, acoustic features, duration, and speaker composition; and (3) formalized evaluation protocols contrasting transcript-dependent text-space protocols with transcript-invariant time-space protocols. Our experiments on YTSeg reveal that AudioSeg substantially outperforms text-based approaches, pauses provide the largest acoustic gains, and MLLMs remain limited by context length and weak instruction following, yet MLLMs are promising on shorter audio.
Open → 2602.08979v1
Distributionally Robust Optimization via Generative Ambiguity Modeling
2026-02-09Machine Learningarxiv
Abstract
This paper studies Distributionally Robust Optimization (DRO), a fundamental framework for enhancing the robustness and generalization of statistical learning and optimization. An effective ambiguity set for DRO must involve distributions that remain consistent to the nominal distribution while being diverse enough to account for a variety of potential scenarios. Moreover, it should lead to tractable DRO solutions. To this end, we propose generative model-based ambiguity sets that capture various adversarial distributions beyond the nominal support space while maintaining consistency with the nominal distribution. Building on this generative ambiguity modeling, we propose DRO with Generative Ambiguity Set (GAS-DRO), a tractable DRO algorithm that solves the inner maximization over the parameterized generative model space. We formally establish the stationary convergence performance of GAS-DRO. We implement GAS-DRO with a diffusion model and empirically demonstrate its superior Out-of-Distribution (OOD) generalization performance in ML tasks.
Open → 2602.08976v1
Lightweight Call Signaling and Peer-to-Peer Control of WebRTC Video Con…
2026-02-09MultimediaNetworking and Internet Architecturearxiv
Abstract
We present the software architecture and implementation of our web-based multiparty video conference application. It does not use a media server. For call signaling, it either piggybacks on existing push notifications via a lightweight notification server, or utilizes email messages to further remove that server dependency. For conference control and data storage, it creates a peer-to-peer network of the clients participating in the call. Our prototype client web app can be installed as a browser extension, or a progressive web app on desktop and mobile. It uses WebRTC data channels and media streams for the control and media paths in implementing a full featured video conferencing with audio, video, text and screen sharing. The challenges faced and the techniques used in creating our lightweight or serverless system are useful to other low-end WebRTC applications that intend to save cost on server maintenance or paid subscriptions for multiparty video calls.
Open → 2602.08975v1
PPG as a Bridge: Cross-Device Authentication for Smart Wearables with P…
2026-02-09Human-Computer Interactionarxiv
Abstract
As smart wearable devices become increasingly powerful and pervasive, protecting user privacy on these devices has emerged as a critical challenge. While existing authentication mechanisms are available for interaction-rich devices such as smartwatches, enabling on-device authentication (ODA) on interaction-limited wearables including rings, earphones, glasses, and wristbands remains difficult. Moreover, as users increasingly own multiple smart devices, relying on device-specific authentication methods becomes redundant and burdensome. To address these challenges, we present PPGTransID, a ubiquitous and unobtrusive cross-device authentication (CDA) approach that leverages the real-time physiological consistency of photoplethysmography (PPG) signals across the human body. PPGTransID utilizes widely available PPG sensors on wearable devices to capture users' physiological signals and compares them with remote PPG (rPPG) signals extracted from a smartphone camera, where robust face-based authentication is already established. In doing so, PPGTransID securely transfers the reliable authentication status of the smartphone to nearby wearable devices without requiring additional user interaction. An evaluation with 33 participants shows that PPGTransID achieves a balanced accuracy of 95.5 percent and generalizes across multiple wearable form factors. Robustness experiments with 10 participants demonstrate resilience to variations in lighting, camera placement, and user behavior, while a real-time usability study with 14 participants confirms reliable performance with minimal interaction burden.
Open → 2602.08972v1