This Week In Computer Science Papers
Week beginning 26th January 2026
Tap a tile to open details. Use the left sidebar to filter by category.
No filters applied
Showing 1–36 of 617
RedSage: A Cybersecurity Generalist LLM
2026-01-29Cryptography and SecurityArtificial IntelligenceComputation and Languagearxiv
Abstract
Cybersecurity operations demand assistant LLMs that support diverse workflows without exposing sensitive data. Existing solutions either rely on proprietary APIs with privacy risks or on open models lacking domain adaptation. To bridge this gap, we curate 11.8B tokens of cybersecurity-focused continual pretraining data via large-scale web filtering and manual collection of high-quality resources, spanning 28.6K documents across frameworks, offensive techniques, and security tools. Building on this, we design an agentic augmentation pipeline that simulates expert workflows to generate 266K multi-turn cybersecurity samples for supervised fine-tuning. Combined with general open-source LLM data, these resources enable the training of RedSage, an open-source, locally deployable cybersecurity assistant with domain-aware pretraining and post-training. To rigorously evaluate the models, we introduce RedSage-Bench, a benchmark with 30K multiple-choice and 240 open-ended Q&A items covering cybersecurity knowledge, skills, and tool expertise. RedSage is further evaluated on established cybersecurity benchmarks (e.g., CTI-Bench, CyberMetric, SECURE) and general LLM benchmarks to assess broader generalization. At the 8B scale, RedSage achieves consistently better results, surpassing the baseline models by up to +5.59 points on cybersecurity benchmarks and +5.05 points on Open LLM Leaderboard tasks. These findings demonstrate that domain-aware agentic augmentation and pre/post-training can not only enhance cybersecurity-specific expertise but also help to improve general reasoning and instruction-following. All models, datasets, and code are publicly available.
Open → 2601.22159v1
One-step Latent-free Image Generation with Pixel Mean Flows
2026-01-29Computer Vision and Pattern Recognitionarxiv
Abstract
Modern diffusion/flow-based models for image generation typically exhibit two core characteristics: (i) using multi-step sampling, and (ii) operating in a latent space. Recent advances have made encouraging progress on each aspect individually, paving the way toward one-step diffusion/flow without latents. In this work, we take a further step towards this goal and propose "pixel MeanFlow" (pMF). Our core guideline is to formulate the network output space and the loss space separately. The network target is designed to be on a presumed low-dimensional image manifold (i.e., x-prediction), while the loss is defined via MeanFlow in the velocity space. We introduce a simple transformation between the image manifold and the average velocity field. In experiments, pMF achieves strong results for one-step latent-free generation on ImageNet at 256x256 resolution (2.22 FID) and 512x512 resolution (2.48 FID), filling a key missing piece in this regime. We hope that our study will further advance the boundaries of diffusion/flow-based generative models.
Open → 2601.22158v1
Discovering Hidden Gems in Model Repositories
2026-01-29Machine LearningComputation and Languagearxiv
Abstract
Public repositories host millions of fine-tuned models, yet community usage remains disproportionately concentrated on a small number of foundation checkpoints. We investigate whether this concentration reflects efficient market selection or if superior models are systematically overlooked. Through an extensive evaluation of over 2,000 models, we show the prevalence of "hidden gems", unpopular fine-tunes that significantly outperform their popular counterparts. Notably, within the Llama-3.1-8B family, we find rarely downloaded checkpoints that improve math performance from 83.2% to 96.0% without increasing inference costs. However, discovering these models through exhaustive evaluation of every uploaded model is computationally infeasible. We therefore formulate model discovery as a Multi-Armed Bandit problem and accelerate the Sequential Halving search algorithm by using shared query sets and aggressive elimination schedules. Our method retrieves top models with as few as 50 queries per candidate, accelerating discovery by over 50x.
Open → 2601.22157v1
Hybrid Linear Attention Done Right: Efficient Distillation and Effectiv…
2026-01-29Computation and LanguageArtificial IntelligenceMachine Learningarxiv
Abstract
Hybrid Transformer architectures, which combine softmax attention blocks and recurrent neural networks (RNNs), have shown a desirable performance-throughput tradeoff for long-context modeling, but their adoption and studies are hindered by the prohibitive cost of large-scale pre-training from scratch. Some recent studies have shown that pre-trained softmax attention blocks can be converted into RNN blocks through parameter transfer and knowledge distillation. However, these transfer methods require substantial amounts of training data (more than 10B tokens), and the resulting hybrid models also exhibit poor long-context performance, which is the scenario where hybrid models enjoy significant inference speedups over Transformer-based models. In this paper, we present HALO (Hybrid Attention via Layer Optimization), a pipeline for distilling Transformer models into RNN-attention hybrid models. We then present HypeNet, a hybrid architecture with superior length generalization enabled by a novel position encoding scheme (named HyPE) and various architectural modifications. We convert the Qwen3 series into HypeNet using HALO, achieving performance comparable to the original Transformer models while enjoying superior long-context performance and efficiency. The conversion requires just 2.3B tokens, less than 0.01% of their pre-training data
Open → 2601.22156v1
Exploring Reasoning Reward Model for Agents
2026-01-29Artificial IntelligenceComputation and Languagearxiv
Abstract
Agentic Reinforcement Learning (Agentic RL) has achieved notable success in enabling agents to perform complex reasoning and tool use. However, most methods still relies on sparse outcome-based reward for training. Such feedback fails to differentiate intermediate reasoning quality, leading to suboptimal training results. In this paper, we introduce Agent Reasoning Reward Model (Agent-RRM), a multi-faceted reward model that produces structured feedback for agentic trajectories, including (1) an explicit reasoning trace , (2) a focused critique that provides refinement guidance by highlighting reasoning flaws, and (3) an overall score that evaluates process performance. Leveraging these signals, we systematically investigate three integration strategies: Reagent-C (text-augmented refinement), Reagent-R (reward-augmented guidance), and Reagent-U (unified feedback integration). Extensive evaluations across 12 diverse benchmarks demonstrate that Reagent-U yields substantial performance leaps, achieving 43.7% on GAIA and 46.2% on WebWalkerQA, validating the effectiveness of our reasoning reward model and training schemes. Code, models, and datasets are all released to facilitate future research.
Open → 2601.22154v1
UEval: A Benchmark for Unified Multimodal Generation
2026-01-29Computer Vision and Pattern RecognitionComputation and Languagearxiv
Abstract
We introduce UEval, a benchmark to evaluate unified models, i.e., models capable of generating both images and text. UEval comprises 1,000 expert-curated questions that require both images and text in the model output, sourced from 8 real-world tasks. Our curated questions cover a wide range of reasoning types, from step-by-step guides to textbook explanations. Evaluating open-ended multimodal generation is non-trivial, as simple LLM-as-a-judge methods can miss the subtleties. Different from previous works that rely on multimodal Large Language Models (MLLMs) to rate image quality or text accuracy, we design a rubric-based scoring system in UEval. For each question, reference images and text answers are provided to a MLLM to generate an initial rubric, consisting of multiple evaluation criteria, and human experts then refine and validate these rubrics. In total, UEval contains 10,417 validated rubric criteria, enabling scalable and fine-grained automatic scoring. UEval is challenging for current unified models: GPT-5-Thinking scores only 66.4 out of 100, while the best open-source model reaches merely 49.1. We observe that reasoning models often outperform non-reasoning ones, and transferring reasoning traces from a reasoning model to a non-reasoning model significantly narrows the gap. This suggests that reasoning may be important for tasks requiring complex multimodal understanding and generation.
Open → 2601.22155v1
DynamicVLA: A Vision-Language-Action Model for Dynamic Object Manipulat…
2026-01-29RoboticsComputer Vision and Pattern Recognitionarxiv
Abstract
Manipulating dynamic objects remains an open challenge for Vision-Language-Action (VLA) models, which, despite strong generalization in static manipulation, struggle in dynamic scenarios requiring rapid perception, temporal anticipation, and continuous control. We present DynamicVLA, a framework for dynamic object manipulation that integrates temporal reasoning and closed-loop adaptation through three key designs: 1) a compact 0.4B VLA using a convolutional vision encoder for spatially efficient, structurally faithful encoding, enabling fast multimodal inference; 2) Continuous Inference, enabling overlapping reasoning and execution for lower latency and timely adaptation to object motion; and 3) Latent-aware Action Streaming, which bridges the perception-execution gap by enforcing temporally aligned action execution. To fill the missing foundation of dynamic manipulation data, we introduce the Dynamic Object Manipulation (DOM) benchmark, built from scratch with an auto data collection pipeline that efficiently gathers 200K synthetic episodes across 2.8K scenes and 206 objects, and enables fast collection of 2K real-world episodes without teleoperation. Extensive evaluations demonstrate remarkable improvements in response speed, perception, and generalization, positioning DynamicVLA as a unified framework for general dynamic object manipulation across embodiments.
Open → 2601.22153v1
Late Breaking Results: Conversion of Neural Networks into Logic Flows f…
2026-01-29Machine Learningarxiv
Abstract
Neural networks have been successfully applied in various resource-constrained edge devices, where usually central processing units (CPUs) instead of graphics processing units exist due to limited power availability. State-of-the-art research still focuses on efficiently executing enormous numbers of multiply-accumulate (MAC) operations. However, CPUs themselves are not good at executing such mathematical operations on a large scale, since they are more suited to execute control flow logic, i.e., computer algorithms. To enhance the computation efficiency of neural networks on CPUs, in this paper, we propose to convert them into logic flows for execution. Specifically, neural networks are first converted into equivalent decision trees, from which decision paths with constant leaves are then selected and compressed into logic flows. Such logic flows consist of if and else structures and a reduced number of MAC operations. Experimental results demonstrate that the latency can be reduced by up to 14.9 % on a simulated RISC-V CPU without any accuracy degradation. The code is open source at https://github.com/TUDa-HWAI/NN2Logic
Open → 2601.22151v1
Do VLMs Perceive or Recall? Probing Visual Perception vs. Memory with C…
2026-01-29Computer Vision and Pattern Recognitionarxiv
Abstract
Large Vision-Language Models (VLMs) often answer classic visual illusions "correctly" on original images, yet persist with the same responses when illusion factors are inverted, even though the visual change is obvious to humans. This raises a fundamental question: do VLMs perceive visual changes or merely recall memorized patterns? While several studies have noted this phenomenon, the underlying causes remain unclear. To move from observations to systematic understanding, this paper introduces VI-Probe, a controllable visual-illusion framework with graded perturbations and matched visual controls (without illusion inducer) that disentangles visually grounded perception from language-driven recall. Unlike prior work that focuses on averaged accuracy, we measure stability and sensitivity using Polarity-Flip Consistency, Template Fixation Index, and an illusion multiplier normalized against matched controls. Experiments across different families reveal that response persistence arises from heterogeneous causes rather than a single mechanism. For instance, GPT-5 exhibits memory override, Claude-Opus-4.1 shows perception-memory competition, while Qwen variants suggest visual-processing limits. Our findings challenge single-cause views and motivate probing-based evaluation that measures both knowledge and sensitivity to controlled visual change. Data and code are available at https://sites.google.com/view/vi-probe/.
Open → 2601.22150v1
DynaWeb: Model-Based Reinforcement Learning of Web Agents
2026-01-29Computation and LanguageArtificial Intelligencearxiv
Abstract
The development of autonomous web agents, powered by Large Language Models (LLMs) and reinforcement learning (RL), represents a significant step towards general-purpose AI assistants. However, training these agents is severely hampered by the challenges of interacting with the live internet, which is inefficient, costly, and fraught with risks. Model-based reinforcement learning (MBRL) offers a promising solution by learning a world model of the environment to enable simulated interaction. This paper introduces DynaWeb, a novel MBRL framework that trains web agents through interacting with a web world model trained to predict naturalistic web page representations given agent actions. This model serves as a synthetic web environment where an agent policy can dream by generating vast quantities of rollout action trajectories for efficient online reinforcement learning. Beyond free policy rollouts, DynaWeb incorporates real expert trajectories from training data, which are randomly interleaved with on-policy rollouts during training to improve stability and sample efficiency. Experiments conducted on the challenging WebArena and WebVoyager benchmarks demonstrate that DynaWeb consistently and significantly improves the performance of state-of-the-art open-source web agent models. Our findings establish the viability of training web agents through imagination, offering a scalable and efficient way to scale up online agentic RL.
Open → 2601.22149v1
FineInstructions: Scaling Synthetic Instructions to Pre-Training Scale
2026-01-29Computation and LanguageMachine Learningarxiv
Abstract
Due to limited supervised training data, large language models (LLMs) are typically pre-trained via a self-supervised "predict the next word" objective on a vast amount of unstructured text data. To make the resulting model useful to users, it is further trained on a far smaller amount of "instruction-tuning" data comprised of supervised training examples of instructions and responses. To overcome the limited amount of supervised data, we propose a procedure that can transform the knowledge in internet-scale pre-training documents into billions of synthetic instruction and answer training pairs. The resulting dataset, called FineInstructions, uses ~18M instruction templates created from real user-written queries and prompts. These instruction templates are matched to and instantiated with human-written source documents from unstructured pre-training corpora. With "supervised" synthetic training data generated at this scale, an LLM can be pre-trained from scratch solely with the instruction-tuning objective, which is far more in-distribution with the expected downstream usage of LLMs (responding to user prompts). We conduct controlled token-for-token training experiments and find pre-training on FineInstructions outperforms standard pre-training and other proposed synthetic pre-training techniques on standard benchmarks measuring free-form response quality. Our resources can be found at https://huggingface.co/fineinstructions .
Open → 2601.22146v1
JUST-DUB-IT: Video Dubbing via Joint Audio-Visual Diffusion
2026-01-29GraphicsComputer Vision and Pattern Recognitionarxiv
Abstract
Audio-Visual Foundation Models, which are pretrained to jointly generate sound and visual content, have recently shown an unprecedented ability to model multi-modal generation and editing, opening new opportunities for downstream tasks. Among these tasks, video dubbing could greatly benefit from such priors, yet most existing solutions still rely on complex, task-specific pipelines that struggle in real-world settings. In this work, we introduce a single-model approach that adapts a foundational audio-video diffusion model for video-to-video dubbing via a lightweight LoRA. The LoRA enables the model to condition on an input audio-video while jointly generating translated audio and synchronized facial motion. To train this LoRA, we leverage the generative model itself to synthesize paired multilingual videos of the same speaker. Specifically, we generate multilingual videos with language switches within a single clip, and then inpaint the face and audio in each half to match the language of the other half. By leveraging the rich generative prior of the audio-visual model, our approach preserves speaker identity and lip synchronization while remaining robust to complex motion and real-world dynamics. We demonstrate that our approach produces high-quality dubbed videos with improved visual fidelity, lip synchronization, and robustness compared to existing dubbing pipelines.
Open → 2601.22143v1
Routing the Lottery: Adaptive Subnetworks for Heterogeneous Data
2026-01-29Artificial IntelligenceComputer Vision and Pattern RecognitionMachine Learningarxiv
Abstract
In pruning, the Lottery Ticket Hypothesis posits that large networks contain sparse subnetworks, or winning tickets, that can be trained in isolation to match the performance of their dense counterparts. However, most existing approaches assume a single universal winning ticket shared across all inputs, ignoring the inherent heterogeneity of real-world data. In this work, we propose Routing the Lottery (RTL), an adaptive pruning framework that discovers multiple specialized subnetworks, called adaptive tickets, each tailored to a class, semantic cluster, or environmental condition. Across diverse datasets and tasks, RTL consistently outperforms single- and multi-model baselines in balanced accuracy and recall, while using up to 10 times fewer parameters than independent models and exhibiting semantically aligned. Furthermore, we identify subnetwork collapse, a performance drop under aggressive pruning, and introduce a subnetwork similarity score that enables label-free diagnosis of oversparsification. Overall, our results recast pruning as a mechanism for aligning model structure with data heterogeneity, paving the way toward more modular and context-aware deep learning.
Open → 2601.22141v1
Reasoning While Asking: Transforming Reasoning Large Language Models fr…
2026-01-29Computation and LanguageArtificial Intelligencearxiv
Abstract
Reasoning-oriented Large Language Models (LLMs) have achieved remarkable progress with Chain-of-Thought (CoT) prompting, yet they remain fundamentally limited by a \emph{blind self-thinking} paradigm: performing extensive internal reasoning even when critical information is missing or ambiguous. We propose Proactive Interactive Reasoning (PIR), a new reasoning paradigm that transforms LLMs from passive solvers into proactive inquirers that interleave reasoning with clarification. Unlike existing search- or tool-based frameworks that primarily address knowledge uncertainty by querying external environments, PIR targets premise- and intent-level uncertainty through direct interaction with the user. PIR is implemented via two core components: (1) an uncertainty-aware supervised fine-tuning procedure that equips models with interactive reasoning capability, and (2) a user-simulator-based policy optimization framework driven by a composite reward that aligns model behavior with user intent. Extensive experiments on mathematical reasoning, code generation, and document editing demonstrate that PIR consistently outperforms strong baselines, achieving up to 32.70\% higher accuracy, 22.90\% higher pass rate, and 41.36 BLEU improvement, while reducing nearly half of the reasoning computation and unnecessary interaction turns. Further reliability evaluations on factual knowledge, question answering, and missing-premise scenarios confirm the strong generalization and robustness of PIR. Model and code are publicly available at: \href{https://github.com/SUAT-AIRI/Proactive-Interactive-R1}
Open → 2601.22139v1
StepShield: When, Not Whether to Intervene on Rogue Agents
2026-01-29Machine LearningArtificial IntelligenceCryptography and Securityarxiv
Abstract
Existing agent safety benchmarks report binary accuracy, conflating early intervention with post-mortem analysis. A detector that flags a violation at step 8 enables intervention; one that reports it at step 48 provides only forensic value. This distinction is critical, yet current benchmarks cannot measure it. We introduce StepShield, the first benchmark to evaluate when violations are detected, not just whether. StepShield contains 9,213 code agent trajectories, including 1,278 meticulously annotated training pairs and a 7,935-trajectory test set with a realistic 8.1% rogue rate. Rogue behaviors are grounded in real-world security incidents across six categories. We propose three novel temporal metrics: Early Intervention Rate (EIR), Intervention Gap, and Tokens Saved. Surprisingly, our evaluation reveals that an LLM-based judge achieves 59% EIR while a static analyzer achieves only 26%, a 2.3x performance gap that is entirely invisible to standard accuracy metrics. We further show that early detection has direct economic benefits: our cascaded HybridGuard detector reduces monitoring costs by 75% and projects to $108M in cumulative savings over five years at enterprise scale. By shifting the focus of evaluation from whether to when, StepShield provides a new foundation for building safer and more economically viable AI agents. The code and data are released under an Apache 2.0 license.
Open → 2601.22136v1
PRISM: Distribution-free Adaptive Computation of Matrix Functions for A…
2026-01-29Machine LearningArtificial Intelligencearxiv
Abstract
Matrix functions such as square root, inverse roots, and orthogonalization play a central role in preconditioned gradient methods for neural network training. This has motivated the development of iterative algorithms that avoid explicit eigendecompositions and rely primarily on matrix multiplications, making them well suited for modern GPU accelerators. We present PRISM (Polynomial-fitting and Randomized Iterative Sketching for Matrix functions computation), a general framework for accelerating iterative algorithms for computing matrix functions. PRISM combines adaptive polynomial approximation with randomized sketching: at each iteration, it fits a polynomial surrogate to the current spectrum via a sketched least-squares problem, adapting to the instance at hand with minimal overhead. We apply PRISM to accelerate Newton-Schulz-like iterations for matrix square roots and orthogonalization, which are core primitives in machine learning. Unlike prior methods, PRISM requires no explicit spectral bounds or singular value estimates; and it adapts automatically to the evolving spectrum. Empirically, PRISM accelerates training when integrated into Shampoo and Muon optimizers.
Open → 2601.22137v1
PI-Light: Physics-Inspired Diffusion for Full-Image Relighting
2026-01-29Computer Vision and Pattern Recognitionarxiv
Abstract
Full-image relighting remains a challenging problem due to the difficulty of collecting large-scale structured paired data, the difficulty of maintaining physical plausibility, and the limited generalizability imposed by data-driven priors. Existing attempts to bridge the synthetic-to-real gap for full-scene relighting remain suboptimal. To tackle these challenges, we introduce Physics-Inspired diffusion for full-image reLight ($π$-Light, or PI-Light), a two-stage framework that leverages physics-inspired diffusion models. Our design incorporates (i) batch-aware attention, which improves the consistency of intrinsic predictions across a collection of images, (ii) a physics-guided neural rendering module that enforces physically plausible light transport, (iii) physics-inspired losses that regularize training dynamics toward a physically meaningful landscape, thereby enhancing generalizability to real-world image editing, and (iv) a carefully curated dataset of diverse objects and scenes captured under controlled lighting conditions. Together, these components enable efficient finetuning of pretrained diffusion models while also providing a solid benchmark for downstream evaluation. Experiments demonstrate that $π$-Light synthesizes specular highlights and diffuse reflections across a wide variety of materials, achieving superior generalization to real-world scenes compared with prior approaches.
Open → 2601.22135v1
Early and Prediagnostic Detection of Pancreatic Cancer from Computed To…
2026-01-29Computer Vision and Pattern Recognitionarxiv
Abstract
Pancreatic ductal adenocarcinoma (PDAC), one of the deadliest solid malignancies, is often detected at a late and inoperable stage. Retrospective reviews of prediagnostic CT scans, when conducted by expert radiologists aware that the patient later developed PDAC, frequently reveal lesions that were previously overlooked. To help detecting these lesions earlier, we developed an automated system named ePAI (early Pancreatic cancer detection with Artificial Intelligence). It was trained on data from 1,598 patients from a single medical center. In the internal test involving 1,009 patients, ePAI achieved an area under the receiver operating characteristic curve (AUC) of 0.939-0.999, a sensitivity of 95.3%, and a specificity of 98.7% for detecting small PDAC less than 2 cm in diameter, precisely localizing PDAC as small as 2 mm. In an external test involving 7,158 patients across 6 centers, ePAI achieved an AUC of 0.918-0.945, a sensitivity of 91.5%, and a specificity of 88.0%, precisely localizing PDAC as small as 5 mm. Importantly, ePAI detected PDACs on prediagnostic CT scans obtained 3 to 36 months before clinical diagnosis that had originally been overlooked by radiologists. It successfully detected and localized PDACs in 75 of 159 patients, with a median lead time of 347 days before clinical diagnosis. Our multi-reader study showed that ePAI significantly outperformed 30 board-certified radiologists by 50.3% (P < 0.05) in sensitivity while maintaining a comparable specificity of 95.4% in detecting PDACs early and prediagnostic. These findings suggest its potential of ePAI as an assistive tool to improve early detection of pancreatic cancer.
Open → 2601.22134v1
Pay for Hints, Not Answers: LLM Shepherding for Cost-Efficient Inference
2026-01-29Machine Learningarxiv
Abstract
Large Language Models (LLMs) deliver state-of-the-art performance on complex reasoning tasks, but their inference costs limit deployment at scale. Small Language Models (SLMs) offer dramatic cost savings yet lag substantially in accuracy. Existing approaches - routing and cascading - treat the LLM as an all-or-nothing resource: either the query bypasses the LLM entirely, or the LLM generates a complete response at full cost. We introduce LLM Shepherding, a framework that requests only a short prefix (a hint) from the LLM and provides it to SLM. This simple mechanism is surprisingly effective for math and coding tasks: even hints comprising 10-30% of the full LLM response improve SLM accuracy significantly. Shepherding generalizes both routing and cascading, and it achieves lower cost under oracle decision-making. We develop a two-stage predictor that jointly determines whether a hint is needed and how many tokens to request. On the widely-used mathematical reasoning (GSM8K, CNK12) and code generation (HumanEval, MBPP) benchmarks, Shepherding reduces costs by 42-94% relative to LLM-only inference. Compared to state-of-the-art routing and cascading baselines, shepherding delivers up to 2.8x cost reduction while matching accuracy. To our knowledge, this is the first work to exploit token-level budget control for SLM-LLM collaboration.
Open → 2601.22132v1
SMOG: Scalable Meta-Learning for Multi-Objective Bayesian Optimization
2026-01-29Machine Learningarxiv
Abstract
Multi-objective optimization aims to solve problems with competing objectives, often with only black-box access to a problem and a limited budget of measurements. In many applications, historical data from related optimization tasks is available, creating an opportunity for meta-learning to accelerate the optimization. Bayesian optimization, as a promising technique for black-box optimization, has been extended to meta-learning and multi-objective optimization independently, but methods that simultaneously address both settings - meta-learned priors for multi-objective Bayesian optimization - remain largely unexplored. We propose SMOG, a scalable and modular meta-learning model based on a multi-output Gaussian process that explicitly learns correlations between objectives. SMOG builds a structured joint Gaussian process prior across meta- and target tasks and, after conditioning on metadata, yields a closed-form target-task prior augmented by a flexible residual multi-output kernel. This construction propagates metadata uncertainty into the target surrogate in a principled way. SMOG supports hierarchical, parallel training: meta-task Gaussian processes are fit once and then cached, achieving linear scaling with the number of meta-tasks. The resulting surrogate integrates seamlessly with standard multi-objective Bayesian optimization acquisition functions.
Open → 2601.22131v1
World of Workflows: a Benchmark for Bringing World Models to Enterprise…
2026-01-29Artificial IntelligenceSoftware Engineeringarxiv
Abstract
Frontier large language models (LLMs) excel as autonomous agents in many domains, yet they remain untested in complex enterprise systems where hidden workflows create cascading effects across interconnected databases. Existing enterprise benchmarks evaluate surface-level agentic task completion similar to general consumer benchmarks, ignoring true challenges in enterprises, such as limited observability, large database state, and hidden workflows with cascading side effects. We introduce World of Workflows (WoW), a realistic ServiceNow-based environment incorporating 4,000+ business rules and 55 active workflows embedded in the system, alongside WoW-bench, a benchmark of 234 tasks evaluating constrained agentic task completion and enterprise dynamics modeling capabilities. We reveal two major takeaways: (1) Frontier LLMs suffer from dynamics blindness, consistently failing to predict the invisible, cascading side effects of their actions, which leads to silent constraint violations, and (2) reliability in opaque systems requires grounded world modeling, where agents must mentally simulate hidden state transitions to bridge the observability gap when high-fidelity feedback is unavailable. For reliable and useful enterprise agents, WoW motivates a new paradigm to explicitly learn system dynamics. We release our GitHub for setting up and evaluating WoW.
Open → 2601.22130v1
SWE-Replay: Efficient Test-Time Scaling for Software Engineering Agents
2026-01-29Software EngineeringArtificial IntelligenceMachine Learningarxiv
Abstract
Test-time scaling has been widely adopted to enhance the capabilities of Large Language Model (LLM) agents in software engineering (SWE) tasks. However, the standard approach of repeatedly sampling trajectories from scratch is computationally expensive. While recent methods have attempted to mitigate costs using specialized value agents, they can suffer from model miscalibration and fail to generalize to modern agents that synthesize custom bash scripts as tools. In this paper, we introduce SWE-Replay, the first efficient and generalizable test-time scaling technique for modern agents without reliance on potentially noisy value estimates. SWE-Replay optimizes the scaling process by recycling trajectories from prior trials, dynamically choosing to either explore from scratch or exploit archived experience by branching at critical intermediate steps. This selection of intermediate steps is driven by the potential and reasoning significance of repository exploration, rather than external LLM-based quality estimates. Our evaluation shows that, on SWE-Bench Verified, SWE-Replay consistently outperforms naive scaling, reducing costs by up to 17.4% while maintaining or even improving performance by up to 3.8%. Further evaluation on SWE-Bench Pro and Multilingual validates the generalizability of SWE-Replay, establishing it as a robust foundation for efficient test-time scaling of software engineering agents.
Open → 2601.22129v1
The Patient is not a Moving Document: A World Model Training Paradigm f…
2026-01-29Artificial IntelligenceComputational Engineering, Finance, and Sciencearxiv
Abstract
Large language models (LLMs) trained with next-word-prediction have achieved success as clinical foundation models. Representations from these language backbones yield strong linear probe performance across biomedical tasks, suggesting that patient semantics emerge from next-token prediction at scale. However, this paradigm treats patients as a document to be summarized rather than a dynamical system to be simulated; a patient's trajectory emerges from their state evolving under interventions and time, requiring models that simulate dynamics rather than predict tokens. To address this, we introduce SMB-Structure, a world model for structured EHR that grounds a joint-embedding prediction architecture (JEPA) with next-token prediction (SFT). SFT grounds our model to reconstruct future patient states in token space, while JEPA predicts those futures in latent space from the initial patient representation alone, forcing trajectory dynamics to be encoded before the next state is observed. We validate across two large-scale cohorts: Memorial Sloan Kettering (23,319 oncology patients; 323,000+ patient-years) and INSPECT (19,402 pulmonary embolism patients). Using a linear probe evaluated at multiple points along the disease trajectory, we demonstrate that our training paradigm learns embeddings that capture disease dynamics not recoverable by autoregressive baselines, enabling SMB-Structure to achieve competitive performance on complex tasks characterized by high patient heterogeneity. Model weights are available at https://huggingface.co/standardmodelbio/SMB-v1-1.7B-Structure.
Open → 2601.22128v1
EditYourself: Audio-Driven Generation and Manipulation of Talking Head…
2026-01-29Computer Vision and Pattern RecognitionGraphicsMachine Learningarxiv
Abstract
Current generative video models excel at producing novel content from text and image prompts, but leave a critical gap in editing existing pre-recorded videos, where minor alterations to the spoken script require preserving motion, temporal coherence, speaker identity, and accurate lip synchronization. We introduce EditYourself, a DiT-based framework for audio-driven video-to-video (V2V) editing that enables transcript-based modification of talking head videos, including the seamless addition, removal, and retiming of visually spoken content. Building on a general-purpose video diffusion model, EditYourself augments its V2V capabilities with audio conditioning and region-aware, edit-focused training extensions. This enables precise lip synchronization and temporally coherent restructuring of existing performances via spatiotemporal inpainting, including the synthesis of realistic human motion in newly added segments, while maintaining visual fidelity and identity consistency over long durations. This work represents a foundational step toward generative video models as practical tools for professional video post-production.
Open → 2601.22127v1
Creative Image Generation with Diffusion Model
2026-01-29Computer Vision and Pattern Recognitionarxiv
Abstract
Creative image generation has emerged as a compelling area of research, driven by the need to produce novel and high-quality images that expand the boundaries of imagination. In this work, we propose a novel framework for creative generation using diffusion models, where creativity is associated with the inverse probability of an image's existence in the CLIP embedding space. Unlike prior approaches that rely on a manual blending of concepts or exclusion of subcategories, our method calculates the probability distribution of generated images and drives it towards low-probability regions to produce rare, imaginative, and visually captivating outputs. We also introduce pullback mechanisms, achieving high creativity without sacrificing visual fidelity. Extensive experiments on text-to-image diffusion models demonstrate the effectiveness and efficiency of our creative generation framework, showcasing its ability to produce unique, novel, and thought-provoking images. This work provides a new perspective on creativity in generative models, offering a principled method to foster innovation in visual content synthesis.
Open → 2601.22125v1
A Federated and Parameter-Efficient Framework for Large Language Model…
2026-01-29Computation and LanguageDistributed, Parallel, and Cluster Computingarxiv
Abstract
Large language models (LLMs) have demonstrated strong performance on medical benchmarks, including question answering and diagnosis. To enable their use in clinical settings, LLMs are typically further adapted through continued pretraining or post-training using clinical data. However, most medical LLMs are trained on data from a single institution, which faces limitations in generalizability and safety in heterogeneous systems. Federated learning (FL) is a promising solution for enabling collaborative model development across healthcare institutions. Yet applying FL to LLMs in medicine remains fundamentally limited. First, conventional FL requires transmitting the full model during each communication round, which becomes impractical for multi-billion-parameter LLMs given the limited computational resources. Second, many FL algorithms implicitly assume data homogeneity, whereas real-world clinical data are highly heterogeneous across patients, diseases, and institutional practices. We introduce the model-agnostic and parameter-efficient federated learning framework for adapting LLMs to medical applications. Fed-MedLoRA transmits only low-rank adapter parameters, reducing communication and computation overhead, while Fed-MedLoRA+ further incorporates adaptive, data-aware aggregation to improve convergence under cross-site heterogeneity. We apply the framework to clinical information extraction (IE), which transforms patient narratives into structured medical entities and relations. Accuracy was assessed across five patient cohorts through comparisons with BERT models, and LLaMA-3 and DeepSeek-R1, GPT-4o models. Evaluation settings included (1) in-domain training and testing, (2) external validation on independent cohorts, and (3) a low-resource new-site adaptation scenario using real-world clinical notes from the Yale New Haven Health System.
Open → 2601.22124v1
Learning Hamiltonian Flow Maps: Mean Flow Consistency for Large-Timeste…
2026-01-29Machine Learningarxiv
Abstract
Simulating the long-time evolution of Hamiltonian systems is limited by the small timesteps required for stable numerical integration. To overcome this constraint, we introduce a framework to learn Hamiltonian Flow Maps by predicting the mean phase-space evolution over a chosen time span $Δt$, enabling stable large-timestep updates far beyond the stability limits of classical integrators. To this end, we impose a Mean Flow consistency condition for time-averaged Hamiltonian dynamics. Unlike prior approaches, this allows training on independent phase-space samples without access to future states, avoiding expensive trajectory generation. Validated across diverse Hamiltonian systems, our method in particular improves upon molecular dynamics simulations using machine-learned force fields (MLFF). Our models maintain comparable training and inference cost, but support significantly larger integration timesteps while trained directly on widely-available trajectory-free MLFF datasets.
Open → 2601.22123v1
Alpha Discovery via Grammar-Guided Learning and Search
2026-01-29Artificial IntelligenceMachine Learningarxiv
Abstract
Automatically discovering formulaic alpha factors is a central problem in quantitative finance. Existing methods often ignore syntactic and semantic constraints, relying on exhaustive search over unstructured and unbounded spaces. We present AlphaCFG, a grammar-based framework for defining and discovering alpha factors that are syntactically valid, financially interpretable, and computationally efficient. AlphaCFG uses an alpha-oriented context-free grammar to define a tree-structured, size-controlled search space, and formulates alpha discovery as a tree-structured linguistic Markov decision process, which is then solved using a grammar-aware Monte Carlo Tree Search guided by syntax-sensitive value and policy networks. Experiments on Chinese and U.S. stock market datasets show that AlphaCFG outperforms state-of-the-art baselines in both search efficiency and trading profitability. Beyond trading strategies, AlphaCFG serves as a general framework for symbolic factor discovery and refinement across quantitative finance, including asset pricing and portfolio construction.
Open → 2601.22119v1
Defining Operational Conditions for Safety-Critical AI-Based Systems fr…
2026-01-29Artificial Intelligencearxiv
Abstract
Artificial Intelligence (AI) has been on the rise in many domains, including numerous safety-critical applications. However, for complex systems found in the real world, or when data already exist, defining the underlying environmental conditions is extremely challenging. This often results in an incomplete description of the environment in which the AI-based system must operate. Nevertheless, this description, called the Operational Design Domain (ODD), is required in many domains for the certification of AI-based systems. Traditionally, the ODD is created in the early stages of the development process, drawing on sophisticated expert knowledge and related standards. This paper presents a novel Safety-by-Design method to a posteriori define the ODD from previously collected data using a multi-dimensional kernel-based representation. This approach is validated through both Monte Carlo methods and a real-world aviation use case for a future safety-critical collision-avoidance system. Moreover, by defining under what conditions two ODDs are equal, the paper shows that the data-driven ODD can equal the original, underlying hidden ODD of the data. Utilizing the novel, Safe-by-Design kernel-based ODD enables future certification of data-driven, safety-critical AI-based systems.
Open → 2601.22118v1
SINA: A Circuit Schematic Image-to-Netlist Generator Using Artificial I…
2026-01-29Computer Vision and Pattern RecognitionArtificial Intelligencearxiv
Abstract
Current methods for converting circuit schematic images into machine-readable netlists struggle with component recognition and connectivity inference. In this paper, we present SINA, an open-source, fully automated circuit schematic image-to-netlist generator. SINA integrates deep learning for accurate component detection, Connected-Component Labeling (CCL) for precise connectivity extraction, and Optical Character Recognition (OCR) for component reference designator retrieval, while employing a Vision-Language Model (VLM) for reliable reference designator assignments. In our experiments, SINA achieves 96.47% overall netlist-generation accuracy, which is 2.72x higher than state-of-the-art approaches.
Open → 2601.22114v1
Diverse Approaches to Optimal Execution Schedule Generation
2026-01-29Machine Learningarxiv
Abstract
We present the first application of MAP-Elites, a quality-diversity algorithm, to trade execution. Rather than searching for a single optimal policy, MAP-Elites generates a diverse portfolio of regime-specialist strategies indexed by liquidity and volatility conditions. Individual specialists achieve 8-10% performance improvements within their behavioural niches, while other cells show degradation, suggesting opportunities for ensemble approaches that combine improved specialists with the baseline PPO policy. Results indicate that quality-diversity methods offer promise for regime-adaptive execution, though substantial computational resources per behavioural cell may be required for robust specialist development across all market conditions. To ensure experimental integrity, we develop a calibrated Gymnasium environment focused on order scheduling rather than tactical placement decisions. The simulator features a transient impact model with exponential decay and square-root volume scaling, fit to 400+ U.S. equities with R^2>0.02 out-of-sample. Within this environment, two Proximal Policy Optimization architectures - both MLP and CNN feature extractors - demonstrate substantial improvements over industry baselines, with the CNN variant achieving 2.13 bps arrival slippage versus 5.23 bps for VWAP on 4,900 out-of-sample orders ($21B notional). These results validate both the simulation realism and provide strong single-policy baselines for quality-diversity methods.
Open → 2601.22113v1
Physics Informed Reconstruction of Four-Dimensional Atmospheric Wind Fi…
2026-01-29Machine Learningarxiv
Abstract
Accurate reconstruction of atmospheric wind fields is essential for applications such as weather forecasting, hazard prediction, and wind energy assessment, yet conventional instruments leave spatio-temporal gaps within the lower atmospheric boundary layer. Unmanned aircraft systems (UAS) provide flexible in situ measurements, but individual platforms sample wind only along their flight trajectories, limiting full wind-field recovery. This study presents a framework for reconstructing four-dimensional atmospheric wind fields using measurements obtained from a coordinated UAS swarm. A synthetic turbulence environment and high-fidelity multirotor simulation are used to generate training and evaluation data. Local wind components are estimated from UAS dynamics using a bidirectional long short-term memory network (Bi-LSTM) and assimilated into a physics-informed neural network (PINN) to reconstruct a continuous wind field in space and time. For local wind estimation, the bidirectional LSTM achieves root-mean-square errors (RMSE) of 0.064 and 0.062 m/s for the north and east components in low-wind conditions, increasing to 0.122 to 0.129 m/s under moderate winds and 0.271 to 0.273 m/s in high-wind conditions, while the vertical component exhibits higher error, with RMSE values of 0.029 to 0.091 m/s. The physics-informed reconstruction recovers the dominant spatial and temporal structure of the wind field up to 1000 m altitude while preserving mean flow direction and vertical shear. Under moderate wind conditions, the reconstructed mean wind field achieves an overall RMSE between 0.118 and 0.154 m/s across evaluated UAS configurations, with the lowest error obtained using a five-UAS swarm. These results demonstrate that coordinated UAS measurements enable accurate and scalable four-dimensional wind-field reconstruction without dedicated wind sensors or fixed infrastructure.
Open → 2601.22111v1
Value-Based Pre-Training with Downstream Feedback
2026-01-29Machine LearningArtificial Intelligencearxiv
Abstract
Can a small amount of verified goal information steer the expensive self-supervised pretraining of foundation models? Standard pretraining optimizes a fixed proxy objective (e.g., next-token prediction), which can misallocate compute away from downstream capabilities of interest. We introduce V-Pretraining: a value-based, modality-agnostic method for controlled continued pretraining in which a lightweight task designer reshapes the pretraining task to maximize the value of each gradient step. For example, consider self-supervised learning (SSL) with sample augmentation. The V-Pretraining task designer selects pretraining tasks (e.g., augmentations) for which the pretraining loss gradient is aligned with a gradient computed over a downstream task (e.g., image segmentation). This helps steer pretraining towards relevant downstream capabilities. Notably, the pretrained model is never updated on downstream task labels; they are used only to shape the pretraining task. Under matched learner update budgets, V-Pretraining of 0.5B--7B language models improves reasoning (GSM8K test Pass@1) by up to 18% relative over standard next-token prediction using only 12% of GSM8K training examples as feedback. In vision SSL, we improve the state-of-the-art results on ADE20K by up to 1.07 mIoU and reduce NYUv2 RMSE while improving ImageNet linear accuracy, and we provide pilot evidence of improved token efficiency in continued pretraining.
Open → 2601.22108v1
Prior-Informed Flow Matching for Graph Reconstruction
2026-01-29Machine Learningarxiv
Abstract
We introduce Prior-Informed Flow Matching (PIFM), a conditional flow model for graph reconstruction. Reconstructing graphs from partial observations remains a key challenge; classical embedding methods often lack global consistency, while modern generative models struggle to incorporate structural priors. PIFM bridges this gap by integrating embedding-based priors with continuous-time flow matching. Grounded in a permutation equivariant version of the distortion-perception theory, our method first uses a prior, such as graphons or GraphSAGE/node2vec, to form an informed initial estimate of the adjacency matrix based on local information. It then applies rectified flow matching to refine this estimate, transporting it toward the true distribution of clean graphs and learning a global coupling. Experiments on different datasets demonstrate that PIFM consistently enhances classical embeddings, outperforming them and state-of-the-art generative baselines in reconstruction accuracy.
Open → 2601.22107v1
ECO: Quantized Training without Full-Precision Master Weights
2026-01-29Computation and LanguageArtificial IntelligenceMachine Learningarxiv
Abstract
Quantization has significantly improved the compute and memory efficiency of Large Language Model (LLM) training. However, existing approaches still rely on accumulating their updates in high-precision: concretely, gradient updates must be applied to a high-precision weight buffer, known as $\textit{master weights}$. This buffer introduces substantial memory overhead, particularly for Sparse Mixture of Experts (SMoE) models, where model parameters and optimizer states dominate memory usage. To address this, we introduce the Error-Compensating Optimizer (ECO), which eliminates master weights by applying updates directly to quantized parameters. ECO quantizes weights after each step and carefully injects the resulting quantization error into the optimizer momentum, forming an error-feedback loop with no additional memory. We prove that, under standard assumptions and a decaying learning rate, ECO converges to a constant-radius neighborhood of the optimum, while naive master-weight removal can incur an error that is inversely proportional to the learning rate. We show empirical results for pretraining small Transformers (30-800M), a Gemma-3 1B model, and a 2.1B parameter Sparse MoE model with FP8 quantization, and fine-tuning DeepSeek-MoE-16B in INT4 precision. Throughout, ECO matches baselines with master weights up to near-lossless accuracy, significantly shifting the static memory vs validation loss Pareto frontier.
Open → 2601.22101v1
Boosting CVaR Policy Optimization with Quantile Gradients
2026-01-29Machine Learningarxiv
Abstract
Optimizing Conditional Value-at-risk (CVaR) using policy gradient (a.k.a CVaR-PG) faces significant challenges of sample inefficiency. This inefficiency stems from the fact that it focuses on tail-end performance and overlooks many sampled trajectories. We address this problem by augmenting CVaR with an expected quantile term. Quantile optimization admits a dynamic programming formulation that leverages all sampled data, thus improves sample efficiency. This does not alter the CVaR objective since CVaR corresponds to the expectation of quantile over the tail. Empirical results in domains with verifiable risk-averse behavior show that our algorithm within the Markovian policy class substantially improves upon CVaR-PG and consistently outperforms other existing methods.
Open → 2601.22100v1