This Week In Computer Science Papers
Week beginning 2nd February 2026
Tap a tile to open details. Use the left sidebar to filter by category.
No filters applied
Showing 1–36 of 799
Shared LoRA Subspaces for almost Strict Continual Learning
2026-02-05Machine LearningArtificial IntelligenceComputer Vision and Pattern Recognitionarxiv
Abstract
Adapting large pretrained models to new tasks efficiently and continually is crucial for real-world deployment but remains challenging due to catastrophic forgetting and the high cost of retraining. While parameter-efficient tuning methods like low rank adaptation (LoRA) reduce computational demands, they lack mechanisms for strict continual learning and knowledge integration, without relying on data replay, or multiple adapters. We propose Share, a novel approach to parameter efficient continual finetuning that learns and dynamically updates a single, shared low-rank subspace, enabling seamless adaptation across multiple tasks and modalities. Share constructs a foundational subspace that extracts core knowledge from past tasks and incrementally integrates new information by identifying essential subspace directions. Knowledge from each new task is incorporated into this evolving subspace, facilitating forward knowledge transfer, while minimizing catastrophic interference. This approach achieves up to 100x parameter reduction and 281x memory savings over traditional LoRA methods, maintaining performance comparable to jointly trained models. A single Share model can replace hundreds of task-specific LoRA adapters, supporting scalable, asynchronous continual learning. Experiments across image classification, natural language understanding, 3D pose estimation, and text-to-image generation validate its effectiveness, making Share a practical and scalable solution for lifelong learning in large-scale AI systems.
Open → 2602.06043v1
Pseudo-Invertible Neural Networks
2026-02-05Machine LearningComputer Vision and Pattern Recognitionarxiv
Abstract
The Moore-Penrose Pseudo-inverse (PInv) serves as the fundamental solution for linear systems. In this paper, we propose a natural generalization of PInv to the nonlinear regime in general and to neural networks in particular. We introduce Surjective Pseudo-invertible Neural Networks (SPNN), a class of architectures explicitly designed to admit a tractable non-linear PInv. The proposed non-linear PInv and its implementation in SPNN satisfy fundamental geometric properties. One such property is null-space projection or "Back-Projection", $x' = x + A^\dagger(y-Ax)$, which moves a sample $x$ to its closest consistent state $x'$ satisfying $Ax=y$. We formalize Non-Linear Back-Projection (NLBP), a method that guarantees the same consistency constraint for non-linear mappings $f(x)=y$ via our defined PInv. We leverage SPNNs to expand the scope of zero-shot inverse problems. Diffusion-based null-space projection has revolutionized zero-shot solving for linear inverse problems by exploiting closed-form back-projection. We extend this method to non-linear degradations. Here, "degradation" is broadly generalized to include any non-linear loss of information, spanning from optical distortions to semantic abstractions like classification. This approach enables zero-shot inversion of complex degradations and allows precise semantic control over generative outputs without retraining the diffusion prior.
Open → 2602.06042v1
Predicting Camera Pose from Perspective Descriptions for Spatial Reason…
2026-02-05Computer Vision and Pattern Recognitionarxiv
Abstract
Multi-image spatial reasoning remains challenging for current multimodal large language models (MLLMs). While single-view perception is inherently 2D, reasoning over multiple views requires building a coherent scene understanding across viewpoints. In particular, we study perspective taking, where a model must build a coherent 3D understanding from multi-view observations and use it to reason from a new, language-specified viewpoint. We introduce CAMCUE, a pose-aware multi-image framework that uses camera pose as an explicit geometric anchor for cross-view fusion and novel-view reasoning. CAMCUE injects per-view pose into visual tokens, grounds natural-language viewpoint descriptions to a target camera pose, and synthesizes a pose-conditioned imagined target view to support answering. To support this setting, we curate CAMCUE-DATA with 27,668 training and 508 test instances pairing multi-view images and poses with diverse target-viewpoint descriptions and perspective-shift questions. We also include human-annotated viewpoint descriptions in the test split to evaluate generalization to human language. CAMCUE improves overall accuracy by 9.06% and predicts target poses from natural-language viewpoint descriptions with over 90% rotation accuracy within 20° and translation accuracy within a 0.5 error threshold. This direct grounding avoids expensive test-time search-and-match, reducing inference time from 256.6s to 1.45s per example and enabling fast, interactive use in real-world scenarios.
Open → 2602.06041v1
SwimBird: Eliciting Switchable Reasoning Mode in Hybrid Autoregressive…
2026-02-05Computer Vision and Pattern Recognitionarxiv
Abstract
Multimodal Large Language Models (MLLMs) have made remarkable progress in multimodal perception and reasoning by bridging vision and language. However, most existing MLLMs perform reasoning primarily with textual CoT, which limits their effectiveness on vision-intensive tasks. Recent approaches inject a fixed number of continuous hidden states as "visual thoughts" into the reasoning process and improve visual performance, but often at the cost of degraded text-based logical reasoning. We argue that the core limitation lies in a rigid, pre-defined reasoning pattern that cannot adaptively choose the most suitable thinking modality for different user queries. We introduce SwimBird, a reasoning-switchable MLLM that dynamically switches among three reasoning modes conditioned on the input: (1) text-only reasoning, (2) vision-only reasoning (continuous hidden states as visual thoughts), and (3) interleaved vision-text reasoning. To enable this capability, we adopt a hybrid autoregressive formulation that unifies next-token prediction for textual thoughts with next-embedding prediction for visual thoughts, and design a systematic reasoning-mode curation strategy to construct SwimBird-SFT-92K, a diverse supervised fine-tuning dataset covering all three reasoning patterns. By enabling flexible, query-adaptive mode selection, SwimBird preserves strong textual logic while substantially improving performance on vision-dense tasks. Experiments across diverse benchmarks covering textual reasoning and challenging visual understanding demonstrate that SwimBird achieves state-of-the-art results and robust gains over prior fixed-pattern multimodal reasoning methods.
Open → 2602.06040v1
DyTopo: Dynamic Topology Routing for Multi-Agent Reasoning via Semantic…
2026-02-05Artificial Intelligencearxiv
Abstract
Multi-agent systems built from prompted large language models can improve multi-round reasoning, yet most existing pipelines rely on fixed, trajectory-wide communication patterns that are poorly matched to the stage-dependent needs of iterative problem solving. We introduce DyTopo, a manager-guided multi-agent framework that reconstructs a sparse directed communication graph at each round. Conditioned on the manager's round goal, each agent outputs lightweight natural-language query (need) and \key (offer) descriptors; DyTopo embeds these descriptors and performs semantic matching, routing private messages only along the induced edges. Across code generation and mathematical reasoning benchmarks and four LLM backbones, DyTopo consistently outperforms over the strongest baseline (avg. +6.2). Beyond accuracy, DyTopo yields an interpretable coordination trace via the evolving graphs, enabling qualitative inspection of how communication pathways reconfigure across rounds.
Open → 2602.06039v1
CommCP: Efficient Multi-Agent Coordination via LLM-Based Communication…
2026-02-05RoboticsArtificial IntelligenceComputer Vision and Pattern Recognitionarxiv
Abstract
To complete assignments provided by humans in natural language, robots must interpret commands, generate and answer relevant questions for scene understanding, and manipulate target objects. Real-world deployments often require multiple heterogeneous robots with different manipulation capabilities to handle different assignments cooperatively. Beyond the need for specialized manipulation skills, effective information gathering is important in completing these assignments. To address this component of the problem, we formalize the information-gathering process in a fully cooperative setting as an underexplored multi-agent multi-task Embodied Question Answering (MM-EQA) problem, which is a novel extension of canonical Embodied Question Answering (EQA), where effective communication is crucial for coordinating efforts without redundancy. To address this problem, we propose CommCP, a novel LLM-based decentralized communication framework designed for MM-EQA. Our framework employs conformal prediction to calibrate the generated messages, thereby minimizing receiver distractions and enhancing communication reliability. To evaluate our framework, we introduce an MM-EQA benchmark featuring diverse, photo-realistic household scenarios with embodied questions. Experimental results demonstrate that CommCP significantly enhances the task success rate and exploration efficiency over baselines. The experiment videos, code, and dataset are available on our project website: https://comm-cp.github.io.
Open → 2602.06038v1
Thinking with Geometry: Active Geometry Integration for Spatial Reasoni…
2026-02-05Computer Vision and Pattern Recognitionarxiv
Abstract
Recent progress in spatial reasoning with Multimodal Large Language Models (MLLMs) increasingly leverages geometric priors from 3D encoders. However, most existing integration strategies remain passive: geometry is exposed as a global stream and fused in an indiscriminate manner, which often induces semantic-geometry misalignment and redundant signals. We propose GeoThinker, a framework that shifts the paradigm from passive fusion to active perception. Instead of feature mixing, GeoThinker enables the model to selectively retrieve geometric evidence conditioned on its internal reasoning demands. GeoThinker achieves this through Spatial-Grounded Fusion applied at carefully selected VLM layers, where semantic visual priors selectively query and integrate task-relevant geometry via frame-strict cross-attention, further calibrated by Importance Gating that biases per-frame attention toward task-relevant structures. Comprehensive evaluation results show that GeoThinker sets a new state-of-the-art in spatial intelligence, achieving a peak score of 72.6 on the VSI-Bench. Furthermore, GeoThinker demonstrates robust generalization and significantly improved spatial perception across complex downstream scenarios, including embodied referring and autonomous driving. Our results indicate that the ability to actively integrate spatial structures is essential for next-generation spatial intelligence. Code can be found at https://github.com/Li-Hao-yuan/GeoThinker.
Open → 2602.06037v1
DFlash: Block Diffusion for Flash Speculative Decoding
2026-02-05Computation and Languagearxiv
Abstract
Autoregressive large language models (LLMs) deliver strong performance but require inherently sequential decoding, leading to high inference latency and poor GPU utilization. Speculative decoding mitigates this bottleneck by using a fast draft model whose outputs are verified in parallel by the target LLM; however, existing methods still rely on autoregressive drafting, which remains sequential and limits practical speedups. Diffusion LLMs offer a promising alternative by enabling parallel generation, but current diffusion models typically underperform compared with autoregressive models. In this paper, we introduce DFlash, a speculative decoding framework that employs a lightweight block diffusion model for parallel drafting. By generating draft tokens in a single forward pass and conditioning the draft model on context features extracted from the target model, DFlash enables efficient drafting with high-quality outputs and higher acceptance rates. Experiments show that DFlash achieves over 6x lossless acceleration across a range of models and tasks, delivering up to 2.5x higher speedup than the state-of-the-art speculative decoding method EAGLE-3.
Open → 2602.06036v1
InterPrior: Scaling Generative Control for Physics-Based Human-Object I…
2026-02-05Computer Vision and Pattern RecognitionGraphicsRoboticsarxiv
Abstract
Humans rarely plan whole-body interactions with objects at the level of explicit whole-body movements. High-level intentions, such as affordance, define the goal, while coordinated balance, contact, and manipulation can emerge naturally from underlying physical and motor priors. Scaling such priors is key to enabling humanoids to compose and generalize loco-manipulation skills across diverse contexts while maintaining physically coherent whole-body coordination. To this end, we introduce InterPrior, a scalable framework that learns a unified generative controller through large-scale imitation pretraining and post-training by reinforcement learning. InterPrior first distills a full-reference imitation expert into a versatile, goal-conditioned variational policy that reconstructs motion from multimodal observations and high-level intent. While the distilled policy reconstructs training behaviors, it does not generalize reliably due to the vast configuration space of large-scale human-object interactions. To address this, we apply data augmentation with physical perturbations, and then perform reinforcement learning finetuning to improve competence on unseen goals and initializations. Together, these steps consolidate the reconstructed latent skills into a valid manifold, yielding a motion prior that generalizes beyond the training data, e.g., it can incorporate new behaviors such as interactions with unseen objects. We further demonstrate its effectiveness for user-interactive control and its potential for real robot deployment.
Open → 2602.06035v1
V-Retrver: Evidence-Driven Agentic Reasoning for Universal Multimodal R…
2026-02-05Computer Vision and Pattern Recognitionarxiv
Abstract
Multimodal Large Language Models (MLLMs) have recently been applied to universal multimodal retrieval, where Chain-of-Thought (CoT) reasoning improves candidate reranking. However, existing approaches remain largely language-driven, relying on static visual encodings and lacking the ability to actively verify fine-grained visual evidence, which often leads to speculative reasoning in visually ambiguous cases. We propose V-Retrver, an evidence-driven retrieval framework that reformulates multimodal retrieval as an agentic reasoning process grounded in visual inspection. V-Retrver enables an MLLM to selectively acquire visual evidence during reasoning via external visual tools, performing a multimodal interleaved reasoning process that alternates between hypothesis generation and targeted visual verification.To train such an evidence-gathering retrieval agent, we adopt a curriculum-based learning strategy combining supervised reasoning activation, rejection-based refinement, and reinforcement learning with an evidence-aligned objective. Experiments across multiple multimodal retrieval benchmarks demonstrate consistent improvements in retrieval accuracy (with 23.0% improvements on average), perception-driven reasoning reliability, and generalization.
Open → 2602.06034v1
Can vision language models learn intuitive physics from interaction?
2026-02-05Machine Learningarxiv
Abstract
Pre-trained vision language models do not have good intuitions about the physical world. Recent work has shown that supervised fine-tuning can improve model performance on simple physical tasks. However, fine-tuned models do not appear to learn robust physical rules that can generalize to new contexts. Based on research in cognitive science, we hypothesize that models need to interact with an environment to properly learn its physical dynamics. We train models that learn through interaction with the environment using reinforcement learning. While learning from interaction allows models to improve their within-task performance, it fails to produce models with generalizable physical intuitions. We find that models trained on one task do not reliably generalize to related tasks, even if the tasks share visual statistics and physical principles, and regardless of whether the models are trained through interaction.
Open → 2602.06033v1
Splat and Distill: Augmenting Teachers with Feed-Forward 3D Reconstruct…
2026-02-05Computer Vision and Pattern Recognitionarxiv
Abstract
Vision Foundation Models (VFMs) have achieved remarkable success when applied to various downstream 2D tasks. Despite their effectiveness, they often exhibit a critical lack of 3D awareness. To this end, we introduce Splat and Distill, a framework that instills robust 3D awareness into 2D VFMs by augmenting the teacher model with a fast, feed-forward 3D reconstruction pipeline. Given 2D features produced by a teacher model, our method first lifts these features into an explicit 3D Gaussian representation, in a feedforward manner. These 3D features are then ``splatted" onto novel viewpoints, producing a set of novel 2D feature maps used to supervise the student model, ``distilling" geometrically grounded knowledge. By replacing slow per-scene optimization of prior work with our feed-forward lifting approach, our framework avoids feature-averaging artifacts, creating a dynamic learning process where the teacher's consistency improves alongside that of the student. We conduct a comprehensive evaluation on a suite of downstream tasks, including monocular depth estimation, surface normal estimation, multi-view correspondence, and semantic segmentation. Our method significantly outperforms prior works, not only achieving substantial gains in 3D awareness but also enhancing the underlying semantic richness of 2D features. Project page is available at https://davidshavin4.github.io/Splat-and-Distill/
Open → 2602.06032v1
AP-OOD: Attention Pooling for Out-of-Distribution Detection
2026-02-05Machine Learningarxiv
Abstract
Out-of-distribution (OOD) detection, which maps high-dimensional data into a scalar OOD score, is critical for the reliable deployment of machine learning models. A key challenge in recent research is how to effectively leverage and aggregate token embeddings from language models to obtain the OOD score. In this work, we propose AP-OOD, a novel OOD detection method for natural language that goes beyond simple average-based aggregation by exploiting token-level information. AP-OOD is a semi-supervised approach that flexibly interpolates between unsupervised and supervised settings, enabling the use of limited auxiliary outlier data. Empirically, AP-OOD sets a new state of the art in OOD detection for text: in the unsupervised setting, it reduces the FPR95 (false positive rate at 95% true positives) from 27.84% to 4.67% on XSUM summarization, and from 77.08% to 70.37% on WMT15 En-Fr translation.
Open → 2602.06031v1
PhysicsAgentABM: Physics-Guided Generative Agent-Based Modeling
2026-02-05Multiagent SystemsMachine Learningarxiv
Abstract
Large language model (LLM)-based multi-agent systems enable expressive agent reasoning but are expensive to scale and poorly calibrated for timestep-aligned state-transition simulation, while classical agent-based models (ABMs) offer interpretability but struggle to integrate rich individual-level signals and non-stationary behaviors. We propose PhysicsAgentABM, which shifts inference to behaviorally coherent agent clusters: state-specialized symbolic agents encode mechanistic transition priors, a multimodal neural transition model captures temporal and interaction dynamics, and uncertainty-aware epistemic fusion yields calibrated cluster-level transition distributions. Individual agents then stochastically realize transitions under local constraints, decoupling population inference from entity-level variability. We further introduce ANCHOR, an LLM agent-driven clustering strategy based on cross-contextual behavioral responses and a novel contrastive loss, reducing LLM calls by up to 6-8 times. Experiments across public health, finance, and social sciences show consistent gains in event-time accuracy and calibration over mechanistic, neural, and LLM baselines. By re-architecting generative ABM around population-level inference with uncertainty-aware neuro-symbolic fusion, PhysicsAgentABM establishes a new paradigm for scalable and calibrated simulation with LLMs.
Open → 2602.06030v1
Curiosity is Knowledge: Self-Consistent Learning and No-Regret Optimiza…
2026-02-05Machine Learningarxiv
Abstract
Active inference (AIF) unifies exploration and exploitation by minimizing the Expected Free Energy (EFE), balancing epistemic value (information gain) and pragmatic value (task performance) through a curiosity coefficient. Yet it has been unclear when this balance yields both coherent learning and efficient decision-making: insufficient curiosity can drive myopic exploitation and prevent uncertainty resolution, while excessive curiosity can induce unnecessary exploration and regret. We establish the first theoretical guarantee for EFE-minimizing agents, showing that a single requirement--sufficient curiosity--simultaneously ensures self-consistent learning (Bayesian posterior consistency) and no-regret optimization (bounded cumulative regret). Our analysis characterizes how this mechanism depends on initial uncertainty, identifiability, and objective alignment, thereby connecting AIF to classical Bayesian experimental design and Bayesian optimization within one theoretical framework. We further translate these theories into practical design guidelines for tuning the epistemic-pragmatic trade-off in hybrid learning-optimization problems, validated through real-world experiments.
Open → 2602.06029v1
Context Forcing: Consistent Autoregressive Video Generation with Long C…
2026-02-05Computer Vision and Pattern Recognitionarxiv
Abstract
Recent approaches to real-time long video generation typically employ streaming tuning strategies, attempting to train a long-context student using a short-context (memoryless) teacher. In these frameworks, the student performs long rollouts but receives supervision from a teacher limited to short 5-second windows. This structural discrepancy creates a critical \textbf{student-teacher mismatch}: the teacher's inability to access long-term history prevents it from guiding the student on global temporal dependencies, effectively capping the student's context length. To resolve this, we propose \textbf{Context Forcing}, a novel framework that trains a long-context student via a long-context teacher. By ensuring the teacher is aware of the full generation history, we eliminate the supervision mismatch, enabling the robust training of models capable of long-term consistency. To make this computationally feasible for extreme durations (e.g., 2 minutes), we introduce a context management system that transforms the linearly growing context into a \textbf{Slow-Fast Memory} architecture, significantly reducing visual redundancy. Extensive results demonstrate that our method enables effective context lengths exceeding 20 seconds -- 2 to 10 times longer than state-of-the-art methods like LongLive and Infinite-RoPE. By leveraging this extended context, Context Forcing preserves superior consistency across long durations, surpassing state-of-the-art baselines on various long video evaluation metrics.
Open → 2602.06028v1
Learning Query-Aware Budget-Tier Routing for Runtime Agent Memory
2026-02-05Computation and LanguageArtificial IntelligenceMachine Learningarxiv
Abstract
Memory is increasingly central to Large Language Model (LLM) agents operating beyond a single context window, yet most existing systems rely on offline, query-agnostic memory construction that can be inefficient and may discard query-critical information. Although runtime memory utilization is a natural alternative, prior work often incurs substantial overhead and offers limited explicit control over the performance-cost trade-off. In this work, we present \textbf{BudgetMem}, a runtime agent memory framework for explicit, query-aware performance-cost control. BudgetMem structures memory processing as a set of memory modules, each offered in three budget tiers (i.e., \textsc{Low}/\textsc{Mid}/\textsc{High}). A lightweight router performs budget-tier routing across modules to balance task performance and memory construction cost, which is implemented as a compact neural policy trained with reinforcement learning. Using BudgetMem as a unified testbed, we study three complementary strategies for realizing budget tiers: implementation (method complexity), reasoning (inference behavior), and capacity (module model size). Across LoCoMo, LongMemEval, and HotpotQA, BudgetMem surpasses strong baselines when performance is prioritized (i.e., high-budget setting), and delivers better accuracy-cost frontiers under tighter budgets. Moreover, our analysis disentangles the strengths and weaknesses of different tiering strategies, clarifying when each axis delivers the most favorable trade-offs under varying budget regimes.
Open → 2602.06025v1
Learning Event-Based Shooter Models from Virtual Reality Experiments
2026-02-05Artificial IntelligenceRoboticsarxiv
Abstract
Virtual reality (VR) has emerged as a powerful tool for evaluating school security measures in high-risk scenarios such as school shootings, offering experimental control and high behavioral fidelity. However, assessing new interventions in VR requires recruiting new participant cohorts for each condition, making large-scale or iterative evaluation difficult. These limitations are especially restrictive when attempting to learn effective intervention strategies, which typically require many training episodes. To address this challenge, we develop a data-driven discrete-event simulator (DES) that models shooter movement and in-region actions as stochastic processes learned from participant behavior in VR studies. We use the simulator to examine the impact of a robot-based shooter intervention strategy. Once shown to reproduce key empirical patterns, the DES enables scalable evaluation and learning of intervention strategies that are infeasible to train directly with human subjects. Overall, this work demonstrates a high-to-mid fidelity simulation workflow that provides a scalable surrogate for developing and evaluating autonomous school-security interventions.
Open → 2602.06023v1
Correctness-Optimized Residual Activation Lens (CORAL): Transferrable a…
2026-02-05Machine LearningArtificial Intelligencearxiv
Abstract
Large language models (LLMs) exhibit persistent miscalibration, especially after instruction tuning and preference alignment. Modified training objectives can improve calibration, but retraining is expensive. Inference-time steering offers a lightweight alternative, yet most existing methods optimize proxies for correctness rather than correctness itself. We introduce CORAL (Correctness-Optimized Residual Activation Lens), a regularized inference-time steering method that captures distributed correctness signals from model internal activations using weight-decay MLP probes. We evaluate CORAL across three 7B-parameter models and find that it consistently improves accuracy by 10\% and expected calibration error (ECE) by 50\% on average. We additionally demonstrate that these gains transfer without retraining to the complete published test sets of four held-out benchmarks (ARC-Challenge, HellaSwag, Math-MC, OpenBookQA), averaging 14\% accuracy improvements and 49\% ECE improvements. Our results support the hypothesis that distributed information in model internals can be extracted using regularized probes when individual neurons are insufficient. CORAL thus provides a compute-efficient, transferable, and calibration-aware approach to improve MCQA performance during inference.
Open → 2602.06022v1
Diffusion Model's Generalization Can Be Characterized by Inductive Bias…
2026-02-05Machine Learningarxiv
Abstract
When a diffusion model is not memorizing the training data set, how does it generalize exactly? A quantitative understanding of the distribution it generates would be beneficial to, for example, an assessment of the model's performance for downstream applications. We thus explicitly characterize what diffusion model generates, by proposing a log-density ridge manifold and quantifying how the generated data relate to this manifold as inference dynamics progresses. More precisely, inference undergoes a reach-align-slide process centered around the ridge manifold: trajectories first reach a neighborhood of the manifold, then align as being pushed toward or away from the manifold in normal directions, and finally slide along the manifold in tangent directions. Within the scope of this general behavior, different training errors will lead to different normal and tangent motions, which can be quantified, and these detailed motions characterize when inter-mode generations emerge. More detailed understanding of training dynamics will lead to more accurate quantification of the generation inductive bias, and an example of random feature model will be considered, for which we can explicitly illustrate how diffusion model's inductive biases originate as a composition of architectural bias and training accuracy, and how they evolve with the inference dynamics. Experiments on synthetic multimodal distributions and MNIST latent diffusion support the predicted directional effects, in both low- and high-dimensions.
Open → 2602.06021v1
Mechanisms of AI Protein Folding in ESMFold
2026-02-05Machine Learningarxiv
Abstract
How do protein structure prediction models fold proteins? We investigate this question by tracing how ESMFold folds a beta hairpin, a prevalent structural motif. Through counterfactual interventions on model latents, we identify two computational stages in the folding trunk. In the first stage, early blocks initialize pairwise biochemical signals: residue identities and associated biochemical features such as charge flow from sequence representations into pairwise representations. In the second stage, late blocks develop pairwise spatial features: distance and contact information accumulate in the pairwise representation. We demonstrate that the mechanisms underlying structural decisions of ESMFold can be localized, traced through interpretable representations, and manipulated with strong causal effects.
Open → 2602.06020v1
Multi-Token Prediction via Self-Distillation
2026-02-05Computation and LanguageMachine Learningarxiv
Abstract
Existing techniques for accelerating language model inference, such as speculative decoding, require training auxiliary speculator models and building and deploying complex inference pipelines. We consider a new approach for converting a pretrained autoregressive language model from a slow single next token prediction model into a fast standalone multi-token prediction model using a simple online distillation objective. The final model retains the exact same implementation as the pretrained initial checkpoint and is deployable without the addition of any auxiliary verifier or other specialized inference code. On GSM8K, our method produces models that can decode more than $3\times$ faster on average at $<5\%$ drop in accuracy relative to single token decoding performance.
Open → 2602.06019v1
Towards uncertainty quantification of a model for cancer-on-chip experi…
2026-02-05Computational Engineering, Finance, and Sciencearxiv
Abstract
This study is a first step towards using data-informed differential models to predict and control the dynamics of cancer-on-chip experiments. We consider a conceptualized one-dimensional device, containing a cancer and a population of white blood cells. The interaction between the cancer and the population of cells is modeled by a chemotaxis model inspired by Keller-Segel-type equations, which is solved by a Hybridized Discontinuous Galerkin method. Our goal is using (synthetic) data to tune the parameters of the governing equations and to assess the uncertainty on the predictions of the dynamics due to the residual uncertainty on the parameters remaining after the tuning procedure. To this end, we apply techniques from uncertainty quantification for parametric differential models. We first perform a global sensitivity analysis using both Sobol and Morris indices to assess how parameter uncertainty impacts model predictions, and fix the value of parameters with negligible impact. Subsequently, we conduct an inverse uncertainty quantification analysis by Bayesian techniques to compute a data-informed probability distribution of the remaining model parameters. Finally, we carry out a forward uncertainty quantification analysis to compute the impact of the updated (residual) parametric uncertainties on the quantities of interest of the model. The whole procedure is sped up by using surrogate models, based on sparse-grids, to approximate the mapping of the uncertain parameters to the quantities of interest.
Open → 2602.06018v1
MambaVF: State Space Model for Efficient Video Fusion
2026-02-05Computer Vision and Pattern Recognitionarxiv
Abstract
Video fusion is a fundamental technique in various video processing tasks. However, existing video fusion methods heavily rely on optical flow estimation and feature warping, resulting in severe computational overhead and limited scalability. This paper presents MambaVF, an efficient video fusion framework based on state space models (SSMs) that performs temporal modeling without explicit motion estimation. First, by reformulating video fusion as a sequential state update process, MambaVF captures long-range temporal dependencies with linear complexity while significantly reducing computation and memory costs. Second, MambaVF proposes a lightweight SSM-based fusion module that replaces conventional flow-guided alignment via a spatio-temporal bidirectional scanning mechanism. This module enables efficient information aggregation across frames. Extensive experiments across multiple benchmarks demonstrate that our MambaVF achieves state-of-the-art performance in multi-exposure, multi-focus, infrared-visible, and medical video fusion tasks. We highlight that MambaVF enjoys high efficiency, reducing up to 92.25% of parameters and 88.79% of computational FLOPs and a 2.1x speedup compared to existing methods. Project page: https://mambavf.github.io
Open → 2602.06017v1
A Systematic Evaluation of Large Language Models for PTSD Severity Esti…
2026-02-05Computation and Languagearxiv
Abstract
Large language models (LLMs) are increasingly being used in a zero-shot fashion to assess mental health conditions, yet we have limited knowledge on what factors affect their accuracy. In this study, we utilize a clinical dataset of natural language narratives and self-reported PTSD severity scores from 1,437 individuals to comprehensively evaluate the performance of 11 state-of-the-art LLMs. To understand the factors affecting accuracy, we systematically varied (i) contextual knowledge like subscale definitions, distribution summary, and interview questions, and (ii) modeling strategies including zero-shot vs few shot, amount of reasoning effort, model sizes, structured subscales vs direct scalar prediction, output rescaling and nine ensemble methods. Our findings indicate that (a) LLMs are most accurate when provided with detailed construct definitions and context of the narrative; (b) increased reasoning effort leads to better estimation accuracy; (c) performance of open-weight models (Llama, Deepseek), plateau beyond 70B parameters while closed-weight (o3-mini, gpt-5) models improve with newer generations; and (d) best performance is achieved when ensembling a supervised model with the zero-shot LLMs. Taken together, the results suggest choice of contextual knowledge and modeling strategies is important for deploying LLMs to accurately assess mental health.
Open → 2602.06015v1
Optimism Stabilizes Thompson Sampling for Adaptive Inference
2026-02-05Machine LearningArtificial Intelligencearxiv
Abstract
Thompson sampling (TS) is widely used for stochastic multi-armed bandits, yet its inferential properties under adaptive data collection are subtle. Classical asymptotic theory for sample means can fail because arm-specific sample sizes are random and coupled with the rewards through the action-selection rule. We study this phenomenon in the $K$-armed Gaussian bandit and identify \emph{optimism} as a key mechanism for restoring \emph{stability}, a sufficient condition for valid asymptotic inference requiring each arm's pull count to concentrate around a deterministic scale. First, we prove that variance-inflated TS \citep{halder2025stable} is stable for any $K \ge 2$, including the challenging regime where multiple arms are optimal. This resolves the open question raised by \citet{halder2025stable} through extending their results from the two-armed setting to the general $K$-armed setting. Second, we analyze an alternative optimistic modification that keeps the posterior variance unchanged but adds an explicit mean bonus to posterior mean, and establish the same stability conclusion. In summary, suitably implemented optimism stabilizes Thompson sampling and enables asymptotically valid inference in multi-armed bandits, while incurring only a mild additional regret cost.
Open → 2602.06014v1
GenArena: How Can We Achieve Human-Aligned Evaluation for Visual Genera…
2026-02-05Computer Vision and Pattern RecognitionArtificial Intelligencearxiv
Abstract
The rapid advancement of visual generation models has outpaced traditional evaluation approaches, necessitating the adoption of Vision-Language Models as surrogate judges. In this work, we systematically investigate the reliability of the prevailing absolute pointwise scoring standard, across a wide spectrum of visual generation tasks. Our analysis reveals that this paradigm is limited due to stochastic inconsistency and poor alignment with human perception. To resolve these limitations, we introduce GenArena, a unified evaluation framework that leverages a pairwise comparison paradigm to ensure stable and human-aligned evaluation. Crucially, our experiments uncover a transformative finding that simply adopting this pairwise protocol enables off-the-shelf open-source models to outperform top-tier proprietary models. Notably, our method boosts evaluation accuracy by over 20% and achieves a Spearman correlation of 0.86 with the authoritative LMArena leaderboard, drastically surpassing the 0.36 correlation of pointwise methods. Based on GenArena, we benchmark state-of-the-art visual generation models across diverse tasks, providing the community with a rigorous and automated evaluation standard for visual generation.
Open → 2602.06013v1
Characterizing and Modeling the GitHub Security Advisories Review Pipel…
2026-02-05Cryptography and SecuritySoftware Engineeringarxiv
Abstract
GitHub Security Advisories (GHSA) have become a central component of open-source vulnerability disclosure and are widely used by developers and security tools. A distinctive feature of GHSA is that only a fraction of advisories are reviewed by GitHub, while the mechanisms associated with this review process remain poorly understood. In this paper, we conduct a large-scale empirical study of GHSA review processes, analyzing over 288,000 advisories spanning 2019--2025. We characterize which advisories are more likely to be reviewed, quantify review delays, and identify two distinct review-latency regimes: a fast path dominated by GitHub Repository Advisories (GRAs) and a slow path dominated by NVD-first advisories. We further develop a queueing model that accounts for this dichotomy based on the structure of the advisory processing pipeline.
Open → 2602.06009v1
AgenticPay: A Multi-Agent LLM Negotiation System for Buyer-Seller Trans…
2026-02-05Artificial IntelligenceMachine Learningarxiv
Abstract
Large language model (LLM)-based agents are increasingly expected to negotiate, coordinate, and transact autonomously, yet existing benchmarks lack principled settings for evaluating language-mediated economic interaction among multiple agents. We introduce AgenticPay, a benchmark and simulation framework for multi-agent buyer-seller negotiation driven by natural language. AgenticPay models markets in which buyers and sellers possess private constraints and product-dependent valuations, and must reach agreements through multi-round linguistic negotiation rather than numeric bidding alone. The framework supports a diverse suite of over 110 tasks ranging from bilateral bargaining to many-to-many markets, with structured action extraction and metrics for feasibility, efficiency, and welfare. Benchmarking state-of-the-art proprietary and open-weight LLMs reveals substantial gaps in negotiation performance and highlights challenges in long-horizon strategic reasoning, establishing AgenticPay as a foundation for studying agentic commerce and language-based market interaction. Code and dataset are available at the link: https://github.com/SafeRL-Lab/AgenticPay.
Open → 2602.06008v1
Supply vs. Demand in Community-Based Fact-Checking on Social Media
2026-02-05Social and Information Networksarxiv
Abstract
Fact-checking ecosystems on social media depend on the interplay between what users want checked and what contributors are willing to supply. Prior research has largely examined these forces in isolation, yet it remains unclear to what extent supply meets demand. We address this gap with an empirical analysis of a unique dataset of 1.1 million fact-checks and fact-checking requests from X's Community Notes platform between June 2024 and May 2025. We find that requests disproportionately target highly visible posts - those with more views and engagement and authored by influential accounts - whereas fact-checks are distributed more broadly across languages, sentiments, and topics. Using a quasi-experimental survival analysis, we further estimate the effect of displaying requests on subsequent note creation. Results show that requests significantly accelerate contributions from Top Writers. Altogether, our findings highlight a gap between the content that attracts requests for fact-checking and the content that ultimately receives fact-checks, while showing that user requests can steer contributors toward greater alignment. These insights carry important implications for platform governance and future research on online misinformation.
Open → 2602.06005v1
Visuo-Tactile World Models
2026-02-05Roboticsarxiv
Abstract
We introduce multi-task Visuo-Tactile World Models (VT-WM), which capture the physics of contact through touch reasoning. By complementing vision with tactile sensing, VT-WM better understands robot-object interactions in contact-rich tasks, avoiding common failure modes of vision-only models under occlusion or ambiguous contact states, such as objects disappearing, teleporting, or moving in ways that violate basic physics. Trained across a set of contact-rich manipulation tasks, VT-WM improves physical fidelity in imagination, achieving 33% better performance at maintaining object permanence and 29% better compliance with the laws of motion in autoregressive rollouts. Moreover, experiments show that grounding in contact dynamics also translates to planning. In zero-shot real-robot experiments, VT-WM achieves up to 35% higher success rates, with the largest gains in multi-step, contact-rich tasks. Finally, VT-WM demonstrates significant downstream versatility, effectively adapting its learned contact dynamics to a novel task and achieving reliable planning success with only a limited set of demonstrations.
Open → 2602.06001v1
Speech Emotion Recognition Leveraging OpenAI's Whisper Representations…
2026-02-05Artificial IntelligenceComputation and Languagearxiv
Abstract
Speech Emotion Recognition (SER) research has faced limitations due to the lack of standard and sufficiently large datasets. Recent studies have leveraged pre-trained models to extract features for downstream tasks such as SER. This work explores the capabilities of Whisper, a pre-trained ASR system, in speech emotion recognition by proposing two attention-based pooling methods, Multi-head Attentive Average Pooling and QKV Pooling, designed to efficiently reduce the dimensionality of Whisper representations while preserving emotional features. We experiment on English and Persian, using the IEMOCAP and ShEMO datasets respectively, with Whisper Tiny and Small. Our multi-head QKV architecture achieves state-of-the-art results on the ShEMO dataset, with a 2.47% improvement in unweighted accuracy. We further compare the performance of different Whisper encoder layers and find that intermediate layers often perform better for SER on the Persian dataset, providing a lightweight and efficient alternative to much larger models such as HuBERT X-Large. Our findings highlight the potential of Whisper as a representation extractor for SER and demonstrate the effectiveness of attention-based pooling for dimension reduction.
Open → 2602.06000v1
On Computation and Reinforcement Learning
2026-02-05Machine Learningarxiv
Abstract
How does the amount of compute available to a reinforcement learning (RL) policy affect its learning? Can policies using a fixed amount of parameters, still benefit from additional compute? The standard RL framework does not provide a language to answer these questions formally. Empirically, deep RL policies are often parameterized as neural networks with static architectures, conflating the amount of compute and the number of parameters. In this paper, we formalize compute bounded policies and prove that policies which use more compute can solve problems and generalize to longer-horizon tasks that are outside the scope of policies with less compute. Building on prior work in algorithmic learning and model-free planning, we propose a minimal architecture that can use a variable amount of compute. Our experiments complement our theory. On a set 31 different tasks spanning online and offline RL, we show that $(1)$ this architecture achieves stronger performance simply by using more compute, and $(2)$ stronger generalization on longer-horizon test tasks compared to standard feedforward networks or deep residual network using up to 5 times more parameters.
Open → 2602.05999v1
VisRefiner: Learning from Visual Differences for Screenshot-to-Code Gen…
2026-02-05Computer Vision and Pattern Recognitionarxiv
Abstract
Screenshot-to-code generation aims to translate user interface screenshots into executable frontend code that faithfully reproduces the target layout and style. Existing multimodal large language models perform this mapping directly from screenshots but are trained without observing the visual outcomes of their generated code. In contrast, human developers iteratively render their implementation, compare it with the design, and learn how visual differences relate to code changes. Inspired by this process, we propose VisRefiner, a training framework that enables models to learn from visual differences between rendered predictions and reference designs. We construct difference-aligned supervision that associates visual discrepancies with corresponding code edits, allowing the model to understand how appearance variations arise from implementation changes. Building on this, we introduce a reinforcement learning stage for self-refinement, where the model improves its generated code by observing both the rendered output and the target design, identifying their visual differences, and updating the code accordingly. Experiments show that VisRefiner substantially improves single-step generation quality and layout fidelity, while also endowing models with strong self-refinement ability. These results demonstrate the effectiveness of learning from visual differences for advancing screenshot-to-code generation.
Open → 2602.05998v1
Causal Inference on Stopped Random Walks in Online Advertising
2026-02-05Machine Learningarxiv
Abstract
We consider a causal inference problem frequently encountered in online advertising systems, where a publisher (e.g., Instagram, TikTok) interacts repeatedly with human users and advertisers by sporadically displaying to each user an advertisement selected through an auction. Each treatment corresponds to a parameter value of the advertising mechanism (e.g., auction reserve-price), and we want to estimate through experiments the corresponding long-term treatment effect (e.g., annual advertising revenue). In our setting, the treatment affects not only the instantaneous revenue from showing an ad, but also changes each user's interaction-trajectory, and each advertiser's bidding policy -- as the latter is constrained by a finite budget. In particular, each a treatment may even affect the size of the population, since users interact longer with a tolerable advertising mechanism. We drop the classical i.i.d. assumption and model the experiment measurements (e.g., advertising revenue) as a stopped random walk, and use a budget-splitting experimental design, the Anscombe Theorem, a Wald-like equation, and a Central Limit Theorem to construct confidence intervals for the long-term treatment effect.
Open → 2602.05997v1
Orthogonal Self-Attention
2026-02-05Machine Learningarxiv
Abstract
Softmax Self-Attention (SSA) is a key component of Transformer architectures. However, when utilised within skipless architectures, which aim to improve representation learning, recent work has highlighted the inherent instability of SSA due to inducing rank collapse and poorly-conditioned Jacobians. In this work, we design a novel attention mechanism: Orthogonal Self-Attention (OSA), which aims to bypass these issues with SSA, in order to allow for (non-causal) Transformers without skip connections and normalisation layers to be more easily trained. In particular, OSA parametrises the attention matrix to be orthogonal via mapping a skew-symmetric matrix, formed from query-key values, through the matrix exponential. We show that this can be practically implemented, by exploiting the low-rank structure of our query-key values, resulting in the computational complexity and memory cost of OSA scaling linearly with sequence length. Furthermore, we derive an initialisation scheme for which we prove ensures that the Jacobian of OSA is well-conditioned.
Open → 2602.05996v1