This Week In Computer Science Papers

Week beginning 2nd February 2026

Tap a tile to open details. Use the left sidebar to filter by category.

No filters applied
Showing 1–36 of 200
Reward-free Alignment for Conflicting Objectives
2026-02-02Computation and LanguageArtificial IntelligenceMachine Learningarxiv
Abstract
Direct alignment methods are increasingly used to align large language models (LLMs) with human preferences. However, many real-world alignment problems involve multiple conflicting objectives, where naive aggregation of preferences can lead to unstable training and poor trade-offs. In particular, weighted loss methods may fail to identify update directions that simultaneously improve all objectives, and existing multi-objective approaches often rely on explicit reward models, introducing additional complexity and distorting user-specified preferences. The contributions of this paper are two-fold. First, we propose a Reward-free Alignment framework for Conflicted Objectives (RACO) that directly leverages pairwise preference data and resolves gradient conflicts via a novel clipped variant of conflict-averse gradient descent. We provide convergence guarantees to Pareto-critical points that respect user-specified objective weights, and further show that clipping can strictly improve convergence rate in the two-objective setting. Second, we improve our method using some heuristics and conduct experiments to demonstrate the compatibility of the proposed framework for LLM alignment. Both qualitative and quantitative evaluations on multi-objective summarization and safety alignment tasks across multiple LLM families (Qwen 3, Llama 3, Gemma 3) show that our method consistently achieves better Pareto trade-offs compared to existing multi-objective alignment baselines.
Open 2602.02495v1
MEG-XL: Data-Efficient Brain-to-Text via Long-Context Pre-Training
2026-02-02Machine Learningarxiv
Abstract
Clinical brain-to-text interfaces are designed for paralysed patients who cannot provide extensive training recordings. Pre-training improves data-efficient generalisation by learning statistical priors across subjects, but these priors critically depend on context. While natural speech might unfold gradually over minutes, most methods pre-train with only a few seconds of context. Thus, we propose MEG-XL, a model pre-trained with 2.5 minutes of MEG context per sample, 5-300x longer than prior work, and equivalent to 191k tokens, capturing extended neural context. Fine-tuning on the task of word decoding from brain data, MEG-XL matches supervised performance with a fraction of the data (e.g. 1hr vs 50hrs) and outperforms brain foundation models. We find that models pre-trained with longer contexts learn representations that transfer better to word decoding. Our results indicate that long-context pre-training helps exploit extended neural context that other methods unnecessarily discard. Code, model weights, and instructions are available at https://github.com/neural-processing-lab/MEG-XL .
Open 2602.02494v1
PixelGen: Pixel Diffusion Beats Latent Diffusion with Perceptual Loss
2026-02-02Computer Vision and Pattern RecognitionArtificial Intelligencearxiv
Abstract
Pixel diffusion generates images directly in pixel space in an end-to-end manner, avoiding the artifacts and bottlenecks introduced by VAEs in two-stage latent diffusion. However, it is challenging to optimize high-dimensional pixel manifolds that contain many perceptually irrelevant signals, leaving existing pixel diffusion methods lagging behind latent diffusion models. We propose PixelGen, a simple pixel diffusion framework with perceptual supervision. Instead of modeling the full image manifold, PixelGen introduces two complementary perceptual losses to guide diffusion model towards learning a more meaningful perceptual manifold. An LPIPS loss facilitates learning better local patterns, while a DINO-based perceptual loss strengthens global semantics. With perceptual supervision, PixelGen surpasses strong latent diffusion baselines. It achieves an FID of 5.11 on ImageNet-256 without classifier-free guidance using only 80 training epochs, and demonstrates favorable scaling performance on large-scale text-to-image generation with a GenEval score of 0.79. PixelGen requires no VAEs, no latent representations, and no auxiliary stages, providing a simpler yet more powerful generative paradigm. Codes are publicly available at https://github.com/Zehong-Ma/PixelGen.
Open 2602.02493v1
Secure Multi-User Linearly-Separable Distributed Computing
2026-02-02Information TheoryCryptography and Securityarxiv
Abstract
The introduction of the new multi-user linearly-separable distributed computing framework, has recently revealed how a parallel treatment of users can yield large parallelization gains with relatively low computation and communication costs. These gains stem from a new approach that converts the computing problem into a sparse matrix factorization problem; a matrix $F$ that describes the users' requests, is decomposed as \(F = DE\), where a \(γ\)-sparse \(E\) defines the task allocation across $N$ servers, and a \(δ\)-sparse \(D\) defines the connectivity between \(N\) servers and \(K\) users as well as the decoding process. While this approach provides near-optimal performance, its linear nature has raised data secrecy concerns. We here adopt an information-theoretic secrecy framework, seeking guarantees that each user can learn nothing more than its own requested function. In this context, our main result provides two necessary and sufficient secrecy criteria; (i) for each user \(k\) who observes $α_k$ server responses, the common randomness visible to that user must span a subspace of dimension exactly $α_k-1$, and (ii) for each user, removing from \(\mathbf{D}\) the columns corresponding to the servers it observes must leave a matrix of rank at least \(K-1\). With these conditions in place, we design a general scheme -- that applies to finite and non-finite fields alike -- which is based on appending to \(\mathbf{E}\) a basis of \(\mathrm{Null}(\mathbf{D})\) and by carefully injecting shared randomness. In many cases, this entails no additional costs. The scheme, while maintaining performance, guarantees perfect information-theoretic secrecy in the case of finite fields, while in the real case, the conditions yield an explicit mutual-information bound that can be made arbitrarily small by increasing the variance of Gaussian common randomness.
Open 2602.02489v1
RLAnything: Forge Environment, Policy, and Reward Model in Completely D…
2026-02-02Machine LearningComputation and Languagearxiv
Abstract
We propose RLAnything, a reinforcement learning framework that dynamically forges environment, policy, and reward models through closed-loop optimization, amplifying learning signals and strengthening the overall RL system for any LLM or agentic scenarios. Specifically, the policy is trained with integrated feedback from step-wise and outcome signals, while the reward model is jointly optimized via consistency feedback, which in turn further improves policy training. Moreover, our theory-motivated automatic environment adaptation improves training for both the reward and policy models by leveraging critic feedback from each, enabling learning from experience. Empirically, each added component consistently improves the overall system, and RLAnything yields substantial gains across various representative LLM and agentic tasks, boosting Qwen3-VL-8B-Thinking by 9.1% on OSWorld and Qwen2.5-7B-Instruct by 18.7% and 11.9% on AlfWorld and LiveBench, respectively. We also that optimized reward-model signals outperform outcomes that rely on human labels. Code: https://github.com/Gen-Verse/Open-AgentRL
Open 2602.02488v1
Carry-Over Lottery Allocation: Practical Incentive-Compatible Drafts
2026-02-02Computer Science and Game Theoryarxiv
Abstract
The NBA Draft lottery is designed to promote competitive balance by awarding better draft positions to weaker teams, but it creates incentives to deliberately lose, a practice known as tanking. We propose a draft mechanism that is simultaneously practical, incentive-compatible, and advantages weaker teams. The \textbf{Carry-Over Lottery Allocation (COLA) Draft Mechanism} represents a paradigm shift in evaluating team quality, replacing a single season's standings with playoff outcomes over multiple years. COLA uses a draft lottery where every non-playoff team receives the same number of lottery tickets, removing incentives to lose additional games after elimination. Lottery tickets that do not win a top draft pick carry over to future lotteries, while playoff success or winning a top pick diminishes a team's accumulated tickets. Over time, COLA rewards teams with poor long-term performance and less prior draft assistance. By retaining the lottery format, COLA preserves transparency and fan engagement. Real-world implementation challenges are addressed to demonstrate feasibility, including transitioning from the current system, handling traded draft picks, and accommodating draft classes of varying strength. The most significant challenge occurs in years with exceptionally strong draft classes, where teams may prefer missing the playoffs in order to gain lottery access, violating a foundational assumption: that teams prefer playoff success to lottery participation. We provide a solution to this problem, employing a truth-elicitation mechanism to identify such years and expand lottery eligibility to include as many playoff teams as necessary to preserve anti-tanking incentives.
Open 2602.02487v1
RE-TRAC: REcursive TRAjectory Compression for Deep Search Agents
2026-02-02Computation and LanguageArtificial Intelligencearxiv
Abstract
LLM-based deep research agents are largely built on the ReAct framework. This linear design makes it difficult to revisit earlier states, branch into alternative search directions, or maintain global awareness under long contexts, often leading to local optima, redundant exploration, and inefficient search. We propose Re-TRAC, an agentic framework that performs cross-trajectory exploration by generating a structured state representation after each trajectory to summarize evidence, uncertainties, failures, and future plans, and conditioning subsequent trajectories on this state representation. This enables iterative reflection and globally informed planning, reframing research as a progressive process. Empirical results show that Re-TRAC consistently outperforms ReAct by 15-20% on BrowseComp with frontier LLMs. For smaller models, we introduce Re-TRAC-aware supervised fine-tuning, achieving state-of-the-art performance at comparable scales. Notably, Re-TRAC shows a monotonic reduction in tool calls and token usage across rounds, indicating progressively targeted exploration driven by cross-trajectory reflection rather than redundant search.
Open 2602.02486v1
Expanding the Capabilities of Reinforcement Learning via Text Feedback
2026-02-02Machine Learningarxiv
Abstract
The success of RL for LLM post-training stems from an unreasonably uninformative source: a single bit of information per rollout as binary reward or preference label. At the other extreme, distillation offers dense supervision but requires demonstrations, which are costly and difficult to scale. We study text feedback as an intermediate signal: richer than scalar rewards, yet cheaper than complete demonstrations. Textual feedback is a natural mode of human interaction and is already abundant in many real-world settings, where users, annotators, and automated judges routinely critique LLM outputs. Towards leveraging text feedback at scale, we formalize a multi-turn RL setup, RL from Text Feedback (RLTF), where text feedback is available during training but not at inference. Therefore, models must learn to internalize the feedback in order to improve their test-time single-turn performance. To do this, we propose two methods: Self Distillation (RLTF-SD), which trains the single-turn policy to match its own feedback-conditioned second-turn generations; and Feedback Modeling (RLTF-FM), which predicts the feedback as an auxiliary objective. We provide theoretical analysis on both methods, and empirically evaluate on reasoning puzzles, competition math, and creative writing tasks. Our results show that both methods consistently outperform strong baselines across benchmarks, highlighting the potential of RL with an additional source of rich supervision at scale.
Open 2602.02482v1
Flow Policy Gradients for Robot Control
2026-02-02RoboticsArtificial Intelligencearxiv
Abstract
Likelihood-based policy gradient methods are the dominant approach for training robot control policies from rewards. These methods rely on differentiable action likelihoods, which constrain policy outputs to simple distributions like Gaussians. In this work, we show how flow matching policy gradients -- a recent framework that bypasses likelihood computation -- can be made effective for training and fine-tuning more expressive policies in challenging robot control settings. We introduce an improved objective that enables success in legged locomotion, humanoid motion tracking, and manipulation tasks, as well as robust sim-to-real transfer on two humanoid robots. We then present ablations and analysis on training dynamics. Results show how policies can exploit the flow representation for exploration when training from scratch, as well as improved fine-tuning robustness over baselines.
Open 2602.02481v1
Motivation, Attention, and Visual Platform Design: How Moral Contagions…
2026-02-02Computers and SocietyEmerging Technologiesarxiv
Abstract
Visual social media platforms have become primary venues for political discourse, yet we know little about how moralization operates differently across platforms and topics. Analyzing 2,027,595 TikToks and 1,126,972 Instagram posts during the 2024 US presidential election, we demonstrate that issues are not necessarily inherently moralized, but a product of audience demographics, platform architecture, and partisan framing. Using temporal supply-demand analysis and moral foundations scoring (eMFD), we examine the dynamics of key electoral issues. Three key findings emerge. First, moralization patterns diverge dramatically by platform: TikTok's algorithm enabled viral spread of moralized abortion and immigration content despite lower supply, while Instagram amplified economic discourse that aligned supply and demand. Second, traditionally "pragmatic" economic issues became moralized-cryptocurrency discourse invoked loyalty and authority foundations more strongly than any other topic, framing regulation as government overreach. Third, platforms responded to different events: TikTok surged after Harris's nomination across all topics (96% reduction in supply volatility), while Instagram spiked around cryptocurrency policy developments. Semantic network analysis reveals TikTok's circular topology enables cross-cutting exposure while Instagram's fragmented structure isolates Harris from economic discourse. These findings demonstrate that understanding political moralization requires examining platform-specific ecosystems where architecture, demographics, and content strategy interact to determine which issues get moralized and how moral content spreads.
Open 2602.02479v1
Training LLMs for Divide-and-Conquer Reasoning Elevates Test-Time Scala…
2026-02-02Computation and Languagearxiv
Abstract
Large language models (LLMs) have demonstrated strong reasoning capabilities through step-by-step chain-of-thought (CoT) reasoning. Nevertheless, at the limits of model capability, CoT often proves insufficient, and its strictly sequential nature constrains test-time scalability. A potential alternative is divide-and-conquer (DAC) reasoning, which decomposes a complex problem into subproblems to facilitate more effective exploration of the solution. Although promising, our analysis reveals a fundamental misalignment between general-purpose post-training and DAC-style inference, which limits the model's capacity to fully leverage this potential. To bridge this gap and fully unlock LLMs' reasoning capabilities on the most challenging tasks, we propose an end-to-end reinforcement learning (RL) framework to enhance their DAC-style reasoning capacity. At each step, the policy decomposes a problem into a group of subproblems, solves them sequentially, and addresses the original one conditioned on the subproblem solutions, with both decomposition and solution integrated into RL training. Under comparable training, our DAC-style framework endows the model with a higher performance ceiling and stronger test-time scalability, surpassing CoT by 8.6% in Pass@1 and 6.3% in Pass@32 on competition-level benchmarks.
Open 2602.02477v1
AgentRx: Diagnosing AI Agent Failures from Execution Trajectories
2026-02-02Artificial Intelligencearxiv
Abstract
AI agents often fail in ways that are difficult to localize because executions are probabilistic, long-horizon, multi-agent, and mediated by noisy tool outputs. We address this gap by manually annotating failed agent runs and release a novel benchmark of 115 failed trajectories spanning structured API workflows, incident management, and open-ended web/file tasks. Each trajectory is annotated with a critical failure step and a category from a grounded-theory derived, cross-domain failure taxonomy. To mitigate the human cost of failure attribution, we present AGENTRX, an automated domain-agnostic diagnostic framework that pinpoints the critical failure step in a failed agent trajectory. It synthesizes constraints, evaluates them step-by-step, and produces an auditable validation log of constraint violations with associated evidence; an LLM-based judge uses this log to localize the critical step and category. Our framework improves step localization and failure attribution over existing baselines across three domains.
Open 2602.02475v1
MemSkill: Learning and Evolving Memory Skills for Self-Evolving Agents
2026-02-02Computation and LanguageArtificial IntelligenceMachine Learningarxiv
Abstract
Most Large Language Model (LLM) agent memory systems rely on a small set of static, hand-designed operations for extracting memory. These fixed procedures hard-code human priors about what to store and how to revise memory, making them rigid under diverse interaction patterns and inefficient on long histories. To this end, we present \textbf{MemSkill}, which reframes these operations as learnable and evolvable memory skills, structured and reusable routines for extracting, consolidating, and pruning information from interaction traces. Inspired by the design philosophy of agent skills, MemSkill employs a \emph{controller} that learns to select a small set of relevant skills, paired with an LLM-based \emph{executor} that produces skill-guided memories. Beyond learning skill selection, MemSkill introduces a \emph{designer} that periodically reviews hard cases where selected skills yield incorrect or incomplete memories, and evolves the skill set by proposing refinements and new skills. Together, MemSkill forms a closed-loop procedure that improves both the skill-selection policy and the skill set itself. Experiments on LoCoMo, LongMemEval, HotpotQA, and ALFWorld demonstrate that MemSkill improves task performance over strong baselines and generalizes well across settings. Further analyses shed light on how skills evolve, offering insights toward more adaptive, self-evolving memory management for LLM agents.
Open 2602.02474v1
HumanX: Toward Agile and Generalizable Humanoid Interaction Skills from…
2026-02-02RoboticsMachine Learningarxiv
Abstract
Enabling humanoid robots to perform agile and adaptive interactive tasks has long been a core challenge in robotics. Current approaches are bottlenecked by either the scarcity of realistic interaction data or the need for meticulous, task-specific reward engineering, which limits their scalability. To narrow this gap, we present HumanX, a full-stack framework that compiles human video into generalizable, real-world interaction skills for humanoids, without task-specific rewards. HumanX integrates two co-designed components: XGen, a data generation pipeline that synthesizes diverse and physically plausible robot interaction data from video while supporting scalable data augmentation; and XMimic, a unified imitation learning framework that learns generalizable interaction skills. Evaluated across five distinct domains--basketball, football, badminton, cargo pickup, and reactive fighting--HumanX successfully acquires 10 different skills and transfers them zero-shot to a physical Unitree G1 humanoid. The learned capabilities include complex maneuvers such as pump-fake turnaround fadeaway jumpshots without any external perception, as well as interactive tasks like sustained human-robot passing sequences over 10 consecutive cycles--learned from a single video demonstration. Our experiments show that HumanX achieves over 8 times higher generalization success than prior methods, demonstrating a scalable and task-agnostic pathway for learning versatile, real-world robot interactive skills.
Open 2602.02473v1
SPARKLING: Balancing Signal Preservation and Symmetry Breaking for Widt…
2026-02-02Machine LearningComputation and Languagearxiv
Abstract
Progressive Learning (PL) reduces pre-training computational overhead by gradually increasing model scale. While prior work has extensively explored depth expansion, width expansion remains significantly understudied, with the few existing methods limited to the early stages of training. However, expanding width during the mid-stage is essential for maximizing computational savings, yet it remains a formidable challenge due to severe training instabilities. Empirically, we show that naive initialization at this stage disrupts activation statistics, triggering loss spikes, while copy-based initialization introduces gradient symmetry that hinders feature diversity. To address these issues, we propose SPARKLING (balancing {S}ignal {P}reservation {A}nd symmet{R}y brea{K}ing for width-progressive {L}earn{ING}), a novel framework for mid-stage width expansion. Our method achieves signal preservation via RMS-scale consistency, stabilizing activation statistics during expansion. Symmetry breaking is ensured through asymmetric optimizer state resetting and learning rate re-warmup. Extensive experiments on Mixture-of-Experts (MoE) models demonstrate that, across multiple width axes and optimizer families, SPARKLING consistently outperforms training from scratch and reduces training cost by up to 35% under $2\times$ width expansion.
Open 2602.02472v1
Multi-head automated segmentation by incorporating detection head into…
2026-02-02Computer Vision and Pattern RecognitionArtificial Intelligencearxiv
Abstract
Deep learning based auto segmentation is increasingly used in radiotherapy, but conventional models often produce anatomically implausible false positives, or hallucinations, in slices lacking target structures. We propose a gated multi-head Transformer architecture based on Swin U-Net, augmented with inter-slice context integration and a parallel detection head, which jointly performs slice-level structure detection via a multi-layer perceptron and pixel-level segmentation through a context-enhanced stream. Detection outputs gate the segmentation predictions to suppress false positives in anatomically invalid slices, and training uses slice-wise Tversky loss to address class imbalance. Experiments on the Prostate-Anatomical-Edge-Cases dataset from The Cancer Imaging Archive demonstrate that the gated model substantially outperforms a non-gated segmentation-only baseline, achieving a mean Dice loss of $0.013 \pm 0.036$ versus $0.732 \pm 0.314$, with detection probabilities strongly correlated with anatomical presence, effectively eliminating spurious segmentations. In contrast, the non-gated model exhibited higher variability and persistent false positives across all slices. These results indicate that detection-based gating enhances robustness and anatomical plausibility in automated segmentation applications, reducing hallucinated predictions without compromising segmentation quality in valid slices, and offers a promising approach for improving the reliability of clinical radiotherapy auto-contouring workflows.
Open 2602.02471v1
Breaking the Reversal Curse in Autoregressive Language Models via Ident…
2026-02-02Artificial Intelligencearxiv
Abstract
Autoregressive large language models (LLMs) have achieved remarkable success in many complex tasks, yet they can still fail in very simple logical reasoning such as the "reversal curse" -- when trained on forward knowledge data of the form "$A \rightarrow B$" (e.g., Alice's husband is Bob), the model is unable to deduce the reversal knowledge "$B \leftarrow A$" (e.g., Bob's wife is Alice) during test. Extensive prior research suggests that this failure is an inherent, fundamental limit of autoregressive causal LLMs, indicating that these models tend to memorize factual-level knowledge rather than capture higher-level rules. In this paper, we challenge this view by showing that this seemingly fundamental limit can be mitigated by slightly tweaking the training data with a simple regularization data recipe called the Identity Bridge of the form "$A \to A$" (e.g., The name of Alice is Alice). Theoretically, we prove that under this recipe, even a one-layer transformer can break the reversal curse by analyzing the implicit bias of gradient descent. Empirically, we show that a 1B pretrained language model finetuned with the proposed data recipe achieves a 40% success rate on reversal tasks, in stark contrast to a near-zero success rate when trained solely on forward-knowledge data. Our work provides a novel theoretical foundation for the reversal curse and offers a principled, low-cost path to encouraging LLMs to learn higher-level rules from data.
Open 2602.02470v1
Age-Aware Edge-Blind Federated Learning via Over-the-Air Aggregation
2026-02-02Information TheoryMachine Learningarxiv
Abstract
We study federated learning (FL) over wireless fading channels where multiple devices simultaneously send their model updates. We propose an efficient \emph{age-aware edge-blind over-the-air FL} approach that does not require channel state information (CSI) at the devices. Instead, the parameter server (PS) uses multiple antennas and applies maximum-ratio combining (MRC) based on its estimated sum of the channel gains to detect the parameter updates. A key challenge is that the number of orthogonal subcarriers is limited; thus, transmitting many parameters requires multiple Orthogonal Frequency Division Multiplexing (OFDM) symbols, which increases latency. To address this, the PS selects only a small subset of model coordinates each round using \emph{AgeTop-\(k\)}, which first picks the largest-magnitude entries and then chooses the \(k\) coordinates with the longest waiting times since they were last selected. This ensures that all selected parameters fit into a single OFDM symbol, reducing latency. We provide a convergence bound that highlights the advantages of using a higher number of antenna array elements and demonstrates a key trade-off: increasing \(k\) decreases compression error at the cost of increasing the effect of channel noise. Experimental results show that (i) more PS antennas greatly improve accuracy and convergence speed; (ii) AgeTop-\(k\) outperforms random selection under relatively good channel conditions; and (iii) the optimum \(k\) depends on the channel, with smaller \(k\) being better in noisy settings.
Open 2602.02469v1
Avenir-Web: Human-Experience-Imitating Multimodal Web Agents with Mixtu…
2026-02-02Artificial IntelligenceComputation and Languagearxiv
Abstract
Despite advances in multimodal large language models, autonomous web agents still struggle to reliably execute long-horizon tasks on complex and dynamic web interfaces. Existing agents often suffer from inaccurate element grounding, the absence of site-specific procedural knowledge, and unstable long-term task tracking and memory, particularly when operating over complex Document Object Model structures. To address these limitations, we introduce Avenir-Web, a web agent that achieves a new open-source state of the art on the Online-Mind2Web benchmark in real-world deployment. Avenir-Web leverages a Mixture of Grounding Experts, Experience-Imitation Planning for incorporating procedural priors, and a task-tracking checklist combined with adaptive memory to enable robust and seamless interaction across diverse user interface paradigms. We evaluate Avenir-Web on Online-Mind2Web, a rigorous benchmark of live and user-centered web tasks. Our results demonstrate that Avenir-Web significantly surpasses prior open-source agents and attains performance parity with top-tier proprietary models, thereby establishing a new open-source state of the art for reliable web agents on live websites.
Open 2602.02468v1
Indications of Belief-Guided Agency and Meta-Cognitive Monitoring in La…
2026-02-02Computation and Languagearxiv
Abstract
Rapid advancements in large language models (LLMs) have sparked the question whether these models possess some form of consciousness. To tackle this challenge, Butlin et al. (2023) introduced a list of indicators for consciousness in artificial systems based on neuroscientific theories. In this work, we evaluate a key indicator from this list, called HOT-3, which tests for agency guided by a general belief-formation and action selection system that updates beliefs based on meta-cognitive monitoring. We view beliefs as representations in the model's latent space that emerge in response to a given input, and introduce a metric to quantify their dominance during generation. Analyzing the dynamics between competing beliefs across models and tasks reveals three key findings: (1) external manipulations systematically modulate internal belief formation, (2) belief formation causally drives the model's action selection, and (3) models can monitor and report their own belief states. Together, these results provide empirical support for the existence of belief-guided agency and meta-cognitive monitoring in LLMs. More broadly, our work lays methodological groundwork for investigating the emergence of agency, beliefs, and meta-cognition in LLMs.
Open 2602.02467v1
MentisOculi: Revealing the Limits of Reasoning with Mental Imagery
2026-02-02Artificial IntelligenceComputer Vision and Pattern RecognitionMachine Learningarxiv
Abstract
Frontier models are transitioning from multimodal large language models (MLLMs) that merely ingest visual information to unified multimodal models (UMMs) capable of native interleaved generation. This shift has sparked interest in using intermediate visualizations as a reasoning aid, akin to human mental imagery. Central to this idea is the ability to form, maintain, and manipulate visual representations in a goal-oriented manner. To evaluate and probe this capability, we develop MentisOculi, a procedural, stratified suite of multi-step reasoning problems amenable to visual solution, tuned to challenge frontier models. Evaluating visual strategies ranging from latent tokens to explicit generated imagery, we find they generally fail to improve performance. Analysis of UMMs specifically exposes a critical limitation: While they possess the textual reasoning capacity to solve a task and can sometimes generate correct visuals, they suffer from compounding generation errors and fail to leverage even ground-truth visualizations. Our findings suggest that despite their inherent appeal, visual thoughts do not yet benefit model reasoning. MentisOculi establishes the necessary foundation to analyze and close this gap across diverse model families.
Open 2602.02465v1
From Directions to Regions: Decomposing Activations in Language Models…
2026-02-02Computation and Languagearxiv
Abstract
Activation decomposition methods in language models are tightly coupled to geometric assumptions on how concepts are realized in activation space. Existing approaches search for individual global directions, implicitly assuming linear separability, which overlooks concepts with nonlinear or multi-dimensional structure. In this work, we leverage Mixture of Factor Analyzers (MFA) as a scalable, unsupervised alternative that models the activation space as a collection of Gaussian regions with their local covariance structure. MFA decomposes activations into two compositional geometric objects: the region's centroid in activation space, and the local variation from the centroid. We train large-scale MFAs for Llama-3.1-8B and Gemma-2-2B, and show they capture complex, nonlinear structures in activation space. Moreover, evaluations on localization and steering benchmarks show that MFA outperforms unsupervised baselines, is competitive with supervised localization methods, and often achieves stronger steering performance than sparse autoencoders. Together, our findings position local geometry, expressed through subspaces, as a promising unit of analysis for scalable concept discovery and model control, accounting for complex structures that isolated directions fail to capture.
Open 2602.02464v1
Abstract Activation Spaces for Content-Invariant Reasoning in Large Lan…
2026-02-02Computation and LanguageArtificial Intelligencearxiv
Abstract
Large Language Models (LLMs) often struggle with deductive judgment in syllogistic reasoning, systematically conflating semantic plausibility with formal validity a phenomenon known as content effect. This bias persists even when models generate step-wise explanations, indicating that intermediate rationales may inherit the same semantic shortcuts that affect answers. Recent approaches propose mitigating this issue by increasing inference-time structural constraints, either by encouraging abstract intermediate representations or by intervening directly in the model's internal computations; however, reliably suppressing semantic interference remains an open challenge. To make formal deduction less sensitive to semantic content, we introduce a framework for abstraction-guided reasoning that explicitly separates structural inference from lexical semantics. We construct paired content-laden and abstract syllogisms and use the model's activations on abstract inputs to define an abstract reasoning space. We then learn lightweight Abstractors that, from content-conditioned residual-stream states, predict representations aligned with this space and integrate these predictions via multi-layer interventions during the forward pass. Using cross-lingual transfer as a test bed, we show that abstraction-aligned steering reduces content-driven errors and improves validity-sensitive performance. Our results position activation-level abstraction as a scalable mechanism for enhancing the robustness of formal reasoning in LLMs against semantic interference.
Open 2602.02462v1
TIC-VLA: A Think-in-Control Vision-Language-Action Model for Robot Navi…
2026-02-02Roboticsarxiv
Abstract
Robots in dynamic, human-centric environments must follow language instructions while maintaining real-time reactive control. Vision-language-action (VLA) models offer a promising framework, but they assume temporally aligned reasoning and control, despite semantic inference being inherently delayed relative to real-time action. We introduce Think-in-Control (TIC)-VLA, a latency-aware framework that explicitly models delayed semantic reasoning during action generation. TIC-VLA defines a delayed semantic-control interface that conditions action generation on delayed vision-language semantic states and explicit latency metadata, in addition to current observations, enabling policies to compensate for asynchronous reasoning. We further propose a latency-consistent training pipeline that injects reasoning inference delays during imitation learning and online reinforcement learning, aligning training with asynchronous deployment. To support realistic evaluation, we present DynaNav, a physics-accurate, photo-realistic simulation suite for language-guided navigation in dynamic environments. Extensive experiments in simulation and on a real robot show that TIC-VLA consistently outperforms prior VLA models while maintaining robust real-time control under multi-second reasoning latency. Project website: https://ucla-mobility.github.io/TIC-VLA/
Open 2602.02459v1
Conflict-Aware Client Selection for Multi-Server Federated Learning
2026-02-02Machine LearningNetworking and Internet Architecturearxiv
Abstract
Federated learning (FL) has emerged as a promising distributed machine learning (ML) that enables collaborative model training across clients without exposing raw data, thereby preserving user privacy and reducing communication costs. Despite these benefits, traditional single-server FL suffers from high communication latency due to the aggregation of models from a large number of clients. While multi-server FL distributes workloads across edge servers, overlapping client coverage and uncoordinated selection often lead to resource contention, causing bandwidth conflicts and training failures. To address these limitations, we propose a decentralized reinforcement learning with conflict risk prediction, named RL CRP, to optimize client selection in multi-server FL systems. Specifically, each server estimates the likelihood of client selection conflicts using a categorical hidden Markov model based on its sparse historical client selection sequence. Then, a fairness-aware reward mechanism is incorporated to promote long-term client participation for minimizing training latency and resource contention. Extensive experiments demonstrate that the proposed RL-CRP framework effectively reduces inter-server conflicts and significantly improves training efficiency in terms of convergence speed and communication cost.
Open 2602.02458v1
MetaCLASS: Metacognitive Coaching for Learning with Adaptive Self-regul…
2026-02-02Computers and Societyarxiv
Abstract
Large language models can generate fluent explanations, but effective tutoring requires supporting the learner's thought process, not just delivering content. Metacognitive tutoring targets this gap by prompting planning, monitoring, debugging, and evaluation, and crucially, deciding when to be active versus minimally present, based on learner signals and trajectory. We introduce MetaCLASS, a learning-science grounded framework that formulates metacognitive tutoring as move selection over 11 interpretable actions aligned to self-regulated learning processes. MetaCLASS uses a two-phase framework that first plans a pedagogical trajectory conditioned on learner profiles (calibration, help-seeking) and then generates natural dialogue consistent with that plan. This yields a dataset of 1,015 conversations (7,711 turns) annotated with turn-level metacognitive labels, and validated for pedagogical contingency and trajectory adherence. We benchmark nine LLMs on predicting the next coach move given the problem and dialogue context. The best model achieves only 43.2\% accuracy, and models exhibit compulsive intervention bias: in turns where effective metacognitive tutoring requires silent (41.7\% of cases), models predict `no intervention' only 4.2\% of the time, while severely over-predicting high-intervention moves. These results show that traditional content-based tutoring ability does not translate to metacognitive tutoring competence, positioning MetaCLASS as a testbed for developing intelligent tutors that promote self-regulated learning.
Open 2602.02457v1
Relationship-Aware Hierarchical 3D Scene Graph for Task Reasoning
2026-02-02Roboticsarxiv
Abstract
Representing and understanding 3D environments in a structured manner is crucial for autonomous agents to navigate and reason about their surroundings. While traditional Simultaneous Localization and Mapping (SLAM) methods generate metric reconstructions and can be extended to metric-semantic mapping, they lack a higher level of abstraction and relational reasoning. To address this gap, 3D scene graphs have emerged as a powerful representation for capturing hierarchical structures and object relationships. In this work, we propose an enhanced hierarchical 3D scene graph that integrates open-vocabulary features across multiple abstraction levels and supports object-relational reasoning. Our approach leverages a Vision Language Model (VLM) to infer semantic relationships. Notably, we introduce a task reasoning module that combines Large Language Models (LLM) and a VLM to interpret the scene graph's semantic and relational information, enabling agents to reason about tasks and interact with their environment more intelligently. We validate our method by deploying it on a quadruped robot in multiple environments and tasks, highlighting its ability to reason about them.
Open 2602.02456v1
Drift-Bench: Diagnosing Cooperative Breakdowns in LLM Agents under Inpu…
2026-02-02Artificial IntelligenceComputation and LanguageSoftware Engineeringarxiv
Abstract
As Large Language Models transition to autonomous agents, user inputs frequently violate cooperative assumptions (e.g., implicit intent, missing parameters, false presuppositions, or ambiguous expressions), creating execution risks that text-only evaluations do not capture. Existing benchmarks typically assume well-specified instructions or restrict evaluation to text-only, single-turn clarification, and thus do not measure multi-turn disambiguation under grounded execution risk. We introduce \textbf{Drift-Bench}, the first diagnostic benchmark that evaluates agentic pragmatics under input faults through multi-turn clarification across state-oriented and service-oriented execution environments. Grounded in classical theories of communication, \textbf{Drift-Bench} provides a unified taxonomy of cooperative breakdowns and employs a persona-driven user simulator with the \textbf{Rise} evaluation protocol. Experiments show substantial performance drops under these faults, with clarification effectiveness varying across user personas and fault types. \MethodName bridges clarification research and agent safety evaluation, enabling systematic diagnosis of failures that can lead to unsafe executions.
Open 2602.02455v1
World-Gymnast: Training Robots with Reinforcement Learning in a World M…
2026-02-02RoboticsArtificial Intelligencearxiv
Abstract
Robot learning from interacting with the physical world is fundamentally bottlenecked by the cost of physical interaction. The two alternatives, supervised finetuning (SFT) from expert demonstrations and reinforcement learning (RL) in a software-based simulator, are limited by the amount of expert data available and the sim-to-real gap for manipulation. With the recent emergence of world models learned from real-world video-action data, we ask the question of whether training a policy in a world model can be more effective than supervised learning or software simulation in achieving better real-robot performance. We propose World-Gymnast, which performs RL finetuning of a vision-language-action (VLA) policy by rolling out the policy in an action-conditioned video world model and rewarding the rollouts with a vision-language model (VLM). On the Bridge robot setup, World-Gymnast outperforms SFT by as much as 18x and outperforms software simulator by as much as 2x. More importantly, World-Gymnast demonstrates intriguing capabilities of RL with a world model, including training on diverse language instructions and novel scenes from the world model, test-time training in a novel scene, and online iterative world model and policy improvement. Our results suggest learning a world model and training robot policies in the cloud could be the key to bridging the gap between robots that work in demonstrations and robots that can work in anyone's household.
Open 2602.02454v1
Thinking with Comics: Enhancing Multimodal Reasoning through Structured…
2026-02-02Artificial Intelligencearxiv
Abstract
Chain-of-Thought reasoning has driven large language models to extend from thinking with text to thinking with images and videos. However, different modalities still have clear limitations: static images struggle to represent temporal structure, while videos introduce substantial redundancy and computational cost. In this work, we propose Thinking with Comics, a visual reasoning paradigm that uses comics as a high information-density medium positioned between images and videos. Comics preserve temporal structure, embedded text, and narrative coherence while requiring significantly lower reasoning cost. We systematically study two reasoning paths based on comics and evaluate them on a range of reasoning tasks and long-context understanding tasks. Experimental results show that Thinking with Comics outperforms Thinking with Images on multi-step temporal and causal reasoning tasks, while remaining substantially more efficient than Thinking with Video. Further analysis indicates that different comic narrative structures and styles consistently affect performance across tasks, suggesting that comics serve as an effective intermediate visual representation for improving multimodal reasoning.
Open 2602.02453v1
Active Causal Experimentalist (ACE): Learning Intervention Strategies v…
2026-02-02Machine LearningArtificial Intelligencearxiv
Abstract
Discovering causal relationships requires controlled experiments, but experimentalists face a sequential decision problem: each intervention reveals information that should inform what to try next. Traditional approaches such as random sampling, greedy information maximization, and round-robin coverage treat each decision in isolation, unable to learn adaptive strategies from experience. We propose Active Causal Experimentalist (ACE), which learns experimental design as a sequential policy. Our key insight is that while absolute information gains diminish as knowledge accumulates (making value-based RL unstable), relative comparisons between candidate interventions remain meaningful throughout. ACE exploits this via Direct Preference Optimization, learning from pairwise intervention comparisons rather than non-stationary reward magnitudes. Across synthetic benchmarks, physics simulations, and economic data, ACE achieves 70-71% improvement over baselines at equal intervention budgets (p < 0.001, Cohen's d ~ 2). Notably, the learned policy autonomously discovers that collider mechanisms require concentrated interventions on parent variables, a theoretically-grounded strategy that emerges purely from experience. This suggests preference-based learning can recover principled experimental strategies, complementing theory with learned domain adaptation.
Open 2602.02451v1
Deciding Reachability and the Covering Problem with Diagnostics for Sou…
2026-02-02Formal Languages and Automata TheoryData Structures and Algorithmsarxiv
Abstract
A central decision problem in Petri net theory is reachability asking whether a given marking can be reached from the initial marking. Related is the covering problem (or sub-marking reachbility), which decides whether there is a reachable marking covering at least the tokens in the given marking. For live and bounded free-choice nets as well as for sound free-choice workflow nets, both problems are polynomial in their computational complexity. This paper refines this complexity for the class of sound acyclic free-choice workflow nets to a quadratic polynomial, more specifically to $O(P^2 + T^2)$. Furthermore, this paper shows the feasibility of accurately explaining why a given marking is or is not reachable. This can be achieved by three new concepts: admissibility, maximum admissibility, and diverging transitions. Admissibility requires that all places in a given marking are pairwise concurrent. Maximum admissibility states that adding a marked place to an admissible marking would make it inadmissible. A diverging transition is a transition which originally "produces" the concurrent tokens that lead to a given marking. In this paper, we provide algorithms for all these concepts and explain their computation in detail by basing them on the concepts of concurrency and post-dominance frontiers - a well known concept from compiler construction. In doing this, we present straight-forward implementations for solving (sub-marking) reachability.
Open 2602.02447v1
Finite-Sample Wasserstein Error Bounds and Concentration Inequalities f…
2026-02-02Machine Learningarxiv
Abstract
This paper derives non-asymptotic error bounds for nonlinear stochastic approximation algorithms in the Wasserstein-$p$ distance. To obtain explicit finite-sample guarantees for the last iterate, we develop a coupling argument that compares the discrete-time process to a limiting Ornstein-Uhlenbeck process. Our analysis applies to algorithms driven by general noise conditions, including martingale differences and functions of ergodic Markov chains. Complementing this result, we handle the convergence rate of the Polyak-Ruppert average through a direct analysis that applies under the same general setting. Assuming the driving noise satisfies a non-asymptotic central limit theorem, we show that the normalized last iterates converge to a Gaussian distribution in the $p$-Wasserstein distance at a rate of order $γ_n^{1/6}$, where $γ_n$ is the step size. Similarly, the Polyak-Ruppert average is shown to converge in the Wasserstein distance at a rate of order $n^{-1/6}$. These distributional guarantees imply high-probability concentration inequalities that improve upon those derived from moment bounds and Markov's inequality. We demonstrate the utility of this approach by considering two applications: (1) linear stochastic approximation, where we explicitly quantify the transition from heavy-tailed to Gaussian behavior of the iterates, thereby bridging the gap between recent finite-sample analyses and asymptotic theory and (2) stochastic gradient descent, where we establish rate of convergence to the central limit theorem.
Open 2602.02445v1
RANKVIDEO: Reasoning Reranking for Text-to-Video Retrieval
2026-02-02Information RetrievalComputer Vision and Pattern Recognitionarxiv
Abstract
Reranking is a critical component of modern retrieval systems, which typically pair an efficient first-stage retriever with a more expressive model to refine results. While large reasoning models have driven rapid progress in text-centric reranking, reasoning-based reranking for video retrieval remains underexplored. To address this gap, we introduce RANKVIDEO, a reasoning-based reranker for video retrieval that explicitly reasons over query-video pairs using video content to assess relevance. RANKVIDEO is trained using a two-stage curriculum consisting of perception-grounded supervised fine-tuning followed by reranking training that combines pointwise, pairwise, and teacher confidence distillation objectives, and is supported by a data synthesis pipeline for constructing reasoning-intensive query-video pairs. Experiments on the large-scale MultiVENT 2.0 benchmark demonstrate that RANKVIDEO consistently improves retrieval performance within a two-stage framework, yielding an average improvement of 31% on nDCG@10 and outperforming text-only and vision-language reranking alternatives, while more efficient.
Open 2602.02444v1
Certain Head, Uncertain Tail: Expert-Sample for Test-Time Scaling in Fi…
2026-02-02Machine Learningarxiv
Abstract
Test-time scaling improves LLM performance by generating multiple candidate solutions, yet token-level sampling requires temperature tuning that trades off diversity against stability. Fine-grained MoE, featuring hundreds of well-trained experts per layer and multi-expert activation per token, offers an unexplored alternative through its rich routing space. We empirically characterize fine-grained MoE routing and uncover an informative pattern: router scores exhibit a certain head of high-confidence experts followed by an uncertain tail of low-confidence candidates. While single-run greedy accuracy remains stable when fewer experts are activated, multi-sample pass@n degrades significantly-suggesting that the certain head governs core reasoning capability while the uncertain tail correlates with reasoning diversity. Motivated by these findings, we propose Expert-Sample, a training-free method that preserves high-confidence selections while injecting controlled stochasticity into the uncertain tail, enabling diverse generation without destabilizing outputs. Evaluated on multiple fine-grained MoE models across math, knowledge reasoning, and code tasks, Expert-Sample consistently improves pass@n and verification-based accuracy. On Qwen3-30B-A3B-Instruct evaluated on GPQA-Diamond with 32 parallel samples, pass@32 rises from 85.4% to 91.9%, and accuracy improves from 59.1% to 62.6% with Best-of-N verification.
Open 2602.02443v1
Large Language Models for Mental Health: A Multilingual Evaluation
2026-02-02Computation and Languagearxiv
Abstract
Large Language Models (LLMs) have remarkable capabilities across NLP tasks. However, their performance in multilingual contexts, especially within the mental health domain, has not been thoroughly explored. In this paper, we evaluate proprietary and open-source LLMs on eight mental health datasets in various languages, as well as their machine-translated (MT) counterparts. We compare LLM performance in zero-shot, few-shot, and fine-tuned settings against conventional NLP baselines that do not employ LLMs. In addition, we assess translation quality across language families and typologies to understand its influence on LLM performance. Proprietary LLMs and fine-tuned open-source LLMs achieve competitive F1 scores on several datasets, often surpassing state-of-the-art results. However, performance on MT data is generally lower, and the extent of this decline varies by language and typology. This variation highlights both the strengths of LLMs in handling mental health tasks in languages other than English and their limitations when translation quality introduces structural or lexical mismatches.
Open 2602.02440v1